Влияние внешнего потока на характеристики поверхностного барьерного разряда

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Проведено исследование влияния вынужденной конвекции газа в разрядной области на рассеиваемую в поверхностном барьерном разряде мощность и динамику зарядки поверхности барьера ионным током. Продемонстрировано, что вследствие конвективного охлаждения разрядной области наблюдается снижение рассеиваемой в разряде мощности, которое может достигать 50% от значений в неподвижном воздухе. Показано, что вследствие переноса облака ионов потоком происходит зарядка дальних областей поверхности барьера конвективным ионным током, что приводит к изменению распределения плотности среднего заряда поверхности.

全文:

受限制的访问

作者简介

И. Селивонин

Объединенный институт высоких температур РАН

编辑信件的主要联系方式.
Email: inock691@ya.ru
俄罗斯联邦, Москва

И. Моралев

Объединенный институт высоких температур РАН

Email: inock691@ya.ru
俄罗斯联邦, Москва

参考

  1. Corke T.C., Jumper E.J., Post M.L., Orlov D., McLaughlin T.E. Application of Weakly-ionized Plasmas as Wing Flow-control Devices // 40th AIAA Aerosp. Sci. Meet. Exhib. 2002. P. 0350.
  2. Moreau E. Airflow Control by Non-thermal Plasma Actuators // J. Phys. D. Appl. Phys. 2007. V. 40. № 3. P. 605.
  3. Kriegseis J., Simon B., Grundmann S. Towards In-flight Applications? A Review on Dielectric Barrier Discharge-based Boundary-layer Control // Appl. Mech. Rev. 2016. V. 68. № 2. P. 020802.
  4. Starikovskiy A., Aleksandrov N. Plasma-assisted Ignition and Combustion // Prog. Energy Combust. Sci. 2013. V. 39. № 1. P. 61.
  5. Starikovskaia S.M. Plasma Assisted Ignition and Combustion // J. Phys. D. Appl. Phys. 2006. V. 39. № 16. P. 265.
  6. Gherardi N., Gouda G., Gat E., Ricard A., Massines F. Transition from Glow Silent Discharge to Micro-discharges in Nitrogen Gas // Plasma Sources Sci. Technol. 2000. V. 9. № 3. P. 340.
  7. Massines F., Rabehi A., Decomps P., Gadri R.B., Ségur P., Mayoux C. Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controlled by Dielectric Barrier // J. Appl. Phys. 1998. V. 83. № 6. P. 2950.
  8. Маланичев В.Е., Малашин М.В., Хомич В.Ю. Конверсия природного газа импульсным барьерным разрядом при атмосферном давлении // ТВТ. 2020. Т. 58. № 1. С. 25.
  9. Yagi S., Tanaka M. Mechanism of Ozone Generation in Air-fed Ozonisers // J. Phys. D. Appl. Phys. 1979. V. 12. № 9. P. 1509.
  10. Eliasson B., Hirth M., Kogelschatz U. Ozone Synthesis from Oxygen in Dielectric Barrier Discharges // J. Phys. D. Appl. Phys. 1987. V. 20. № 11. P. 1421.
  11. Brandenburg R. Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments // Plasma Sources Sci. Technol. 2017. V. 26. № 5. P. 053001.
  12. Kogelschatz U., Eliasson B., Egli W. Dielectric-barrier Discharges. Principle and Applications // J. Phys. IV Fr. 1997. V. 7. P. C4–47.
  13. Кривов С.А., Ларин В.С., Соколова М.В., Черненский Л.Л., Егорова М.А. О распределении электрического поля у края электрода при поверхностном разряде // ПЖТФ. 2010. Т. 36. № 3. С. 68.
  14. Höft H., Becker M.M., Kettlitz M. Impact of Gas Flow Rate on Breakdown of Filamentary Dielectric Barrier Discharges // Phys. Plasmas. 2016. V. 23. № 3. P. 033504.
  15. Pereira R., Ragni D., Kotsonis M. Effect of External Flow Velocity on Momentum Transfer of Dielectric Barrier Discharge Plasma Actuators // J. Appl. Phys. 2014. V. 116. № 10. P. 103301.
  16. Поливанов П.А., Вишняков О.И., Кисловский В.А., Сидоренко А.А. Исследование влияния скорости набегающего потока на течение, индуцируемое диэлектрическим барьерным разрядом // ЖЭТФ. 2023. Т. 163. № 5. С. 717.
  17. Rodrigues F.F., Pascoa J.C., Trancossi M. Experimental Analysis of Dielectric Barrier Discharge Plasma Actuators Thermal Characteristics under External Flow Influence // J. Heat Transfer. 2018. V. 140. № 10. P. 1.
  18. Kriegseis J., Grundmann S., Tropea C. Airflow Influence on the Discharge Performance of Dielectric Barrier Discharge Plasma Actuators // Phys. Plasmas. 2012. V. 19. № 7. P. 073509.
  19. Kriegseis J., Grundmann S., Tropea C. Power Consumption, Discharge Capacitance and Light Emission as Measures for Thrust Production of Dielectric Barrier Discharge Plasma Actuators // J. Phys. D. Appl. Phys. 2011. V. 110. P. 013305.
  20. Kriegseis J., Möller B., Grundmann S., Tropea C. Capacitance and Power Consumption Quantification of Dielectric Barrier Discharge (DBD) Plasma Actuators // J. Electrostat. 2011. V. 69. № 4. P. 302.
  21. Manley T.C. The Electric Characteristics of the Ozonator Discharge // J. Electrochem. Soc. 1943. V. 84. P. 83.
  22. Pipa A.V., Koskulics J., Brandenburg R., Hoder T. The Simplest Equivalent Circuit of a Pulsed Dielectric Barrier Discharge and the Determination of the Gas Gap Charge Transfer // Rev. Sci. Instrum. 2012. V. 83. № 11. P. 115112.
  23. Пашин М.М., Лысов Н.Ю. Измерение энергозатрат в озонаторах с объемным барьерным разрядом // Электричество. 2011. № 12. С. 21.
  24. Orlov D.M., Font G.I., Edelstein D. Characterization of Discharge Modes of Plasma Actuators // AIAA J. 2008. V. 46. № 12. P. 3142.
  25. Orlov D.M. Modelling and Simulation of Single Dielectric Barrier Discharge Plasma Actuators. Dis. ... by Graduate Program in Aerospace and Mechanical Engineering. Notre Dame, Indiana, 2006. 205 p.
  26. Selivonin I., Lazukin A., Moralev I., Krivov S., Roslyakov I. Erosion of the Sputtered Electrodes in the Surface Barrier Discharge // J. Phys. Conf. Ser. 2019. V. 1394. P. 012027.
  27. Селивонин И.В. Влияние деградации коронирующего электрода на характеристики поверхностного барьерного разряда. Дис. …канд. физ.-мат. наук. М.: ОИВТ РАН, 2022. 162 с.
  28. Selivonin I.V., Lazukin A.V., Moralev I.A., Krivov S.A. Effect of Electrode Degradation on the Electrical Characteristics of Surface Dielectric Barrier Discharge // Plasma Sources Sci. Technol. 2018. V. 27. № 8. P. 085003.
  29. Akishev Y., Aponin G., Balakirev A. et al. Stepwise Expansion of a Surface Dielectric Barrier Discharge as a Result of Alternation in Formation of Streamers and Leaders // J. Phys. D. Appl. Phys. 2013. V. 46. P. 135204.
  30. Moralev I., Sherbakova V., Selivonin I., Bityurin V., Ustinov M. Effect of the Discharge Constriction in DBD Plasma Actuator on the Laminar Boundary Layer // Int. J. Heat Mass Transfer. 2018. V. 116. P. 1326.
  31. Cristofolini A., Borghi C., Neretti G. Charge Distribution on the Surface of a Dielectric Barrier Discharge Actuator for the Fluid-dynamic Control // J. Appl. Phys. 2013. V. 113. № 14. P. 143307.
  32. Cristofolini A., Neretti G., Borghi C. Effect of the Charge Surface Distribution on the Flow Field Induced by a Dielectric Barrier Discharge Actuator // J. Appl. Phys. 2013. V. 114. № 7. P. 073303.
  33. Gibalov V.I., Pietsch G.J. The Development of Dielectric Barrier Discharges in Gas Gaps and on Surfaces // J. Phys. D. Appl. Phys. 2000. V. 33. № 20. P. 2618.
  34. Selivonin I.V., Moralev I.A. Microdischarges Properties in SDBD: the Role of the Exposed Electrode Oxidation // Plasma Sources Sci. Technol. 2021. V. 30. № 3. P. 035005.
  35. Соколова М.В., Кривов С.А., Скуратов М.В. Поверхностный разряд при повышенных температурах воздуха // ПЖТФ. 2010. Т. 36. № 11. С. 24.
  36. Райзер Ю.П. Физика газового разряда. М.: Интеллект, 2009. 736 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of the discharge cell: 1 – corona electrode, 2 – surface barrier discharge, 3 – dielectric barrier, 4 – underlying sectioned electrode, 5 – silicone compound, 6 – switch, 7 – measuring capacitors.

下载 (62KB)
3. Fig. 2. Oscillograms of the applied voltage (a) and the charge transferred in the barrier discharge (b) when the discharge is powered in the radio pulse mode: 1 – oscillogram envelopes showing the amplitude values ​​of the quantities; 2 – average value of the charge transferred over the period of the supply voltage.

下载 (208KB)
4. Fig. 3. Flow velocity profiles in the boundary layer at the point of electrode installation: 1 – 20 m/s, 2 – 40, 3 – 60.

下载 (93KB)
5. Fig. 4. Oscillograms of the applied voltage – 1 and the transferred charge – 2 (a) and the volt-coulomb characteristic of the discharge (b): the shaded area is the energy input into the discharge during the period of the applied voltage.

下载 (250KB)
6. Fig. 5. Dependence of the power dissipated in the discharge on the amplitude Ua of the applied voltage at different flow velocities (1 – 0 m/s, 2 – 20, 3 – 40, 4 – 60) and discharge orientations in it: (a) – with the flow, (b) – against the flow, (c) – across the flow.

下载 (143KB)
7. Fig. 6. Dynamics of the average charge Qav of the barrier surface over the period at different flow rates (1 – 0 m/s, 2 – 20, 3 – 40, 4 – 60) and discharge orientations in it: (a) – with the flow, (b) – against the flow, (c) – across the flow; the moment t = 0 ms corresponds to the discharge switching on; the amplitude of the supply voltage is 5 kV.

下载 (130KB)
8. Fig. 7. Distribution of the charge induced on the dielectric surface at different moments of time after discharge initiation (1 – 50 μs, 2 – 100, 3 – 150, 4 – 250, 5 – 30 ms) at an applied voltage amplitude of 5 kV in still air (a); (b) – image of the discharge at these parameters, obtained with an exposure of 30 ms.

下载 (117KB)
9. Fig. 8. Distribution of the charge induced on the dielectric surface at different moments in time (1 – 50 μs, 2 – 10 ms, 3 – 15, 4 – 25, 5 – 30) at an incident flow velocity of 60 m/s (a) and at different flow velocities (1 – 0 m/s, 2 – 20, 3 – 40, 4 – 60) at a time of 30 ms after discharge ignition (b): the discharge is oriented downstream, the amplitude of the applied voltage is 5 kV.

下载 (149KB)
10. Fig. 9. Dynamics of the averaged over the period applied voltage of the barrier surface charge and the charging current at a flow velocity of 60 m/s: the discharge is oriented along the flow, the amplitude of the applied voltage is 5 kV; the start of the count is the moment the discharge is switched on; 1 – charge, 2 – ion current (dq/dt), 3 – ion current (smoothed).

下载 (124KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».