Экспериментальное и численное исследование управления возмущениями на границе поперечной струи в сверхзвуковом потоке с помощью искрового разряда

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Работа посвящена исследованию влияния периодических искровых разрядов на формирование возмущений в сдвиговом слое на границе вторичной околозвуковой поперечной струи в сверхзвуковом потоке (число Маха – 1.6). Разряды локализованы с наветренной стороны от инжектора, в отрывной зоне. В экспериментах на установке ИАДТ-50 в ОИВТ РАН получены высокоскоростные теневые видеозаписи течения при отсутствии и наличии разрядов и проведен фурье-анализ нескольких областей этих видеозаписей. Также в программном комплексе FlowVision методом URANS выполнено компьютерное моделирование течения. Результаты моделирования хорошо согласуются с экспериментальными данными. Продемонстрировано, что искровые разряды способны инициировать формирование возмущений в сдвиговом слое на передней границе струи и влиять на их частоту.

Об авторах

Л. С. Волков

Объединенный институт высоких температур РАН

Email: volkov.ls@phystech.edu
Москва, Россия

И. В. Селивонин

Объединенный институт высоких температур РАН

Email: volkov.ls@phystech.edu
Москва, Россия

А. А. Фирсов

Объединенный институт высоких температур РАН

Автор, ответственный за переписку.
Email: volkov.ls@phystech.edu
Москва, Россия

Список литературы

  1. Zhang Q., Li X., Che X., Zhang T., Deng B., Ge J., Wei Y., Zhu S. Scramjet Plasma Ignition and Assisted Combustion Technology Review // Proc. 2023 4th Int. Symp. on Insulation and Discharge Computation for Power Equipment (IDCOMPU2023). 2024. P. 429.
  2. Логунов А.А., Корнев К.Н., Шибкова Л.В., Шибков В.М. Влияние межэлектродного расстояния на основные характеристики пульсирующего поперечно-продольного разряда в высокоскоростных многокомпонентных газовых потоках // ТВТ. 2021. Т. 59. № 1. С. 22.
  3. Firsov A., Bityurin V., Tarasov D., Dobrovolskaya A., Troshkin R., Bocharov A. Longitudinal DC Discharge in a Supersonic Flow: Numerical Simulation and Experiment // Energies (Basel). 2022. V. 15. № 19. P. 7015.
  4. Feng R., Meng Zh., Zhu J. et al. Gliding Arc Plasma-сontrolled Behaviors of Jet-wake Stabilized Combustion in a Scramjet Combustor // AIAA J. 2023. V. 61. № 7. P. 2789.
  5. Булат П.В., Волков К.Н., Грачев Л.П., Есаков И.И., Лавров П.Б. Воспламенение топливной смеси с помощью искрового и инициированного стримерного разряда в различных условиях // ТВТ. 2022. Т. 60. № 4. С. 548.
  6. Знаменская И.А., Коротеева Е.Ю., Карнозова Е.А., Кули-Заде Т.А. Динамика тепловых потоков нагретой импульсным сильноточным разрядом области канала // ТВТ. 2023. Т. 61. № 1. С. 18.
  7. Bityurin V.A., Bocharov A.N., Dobrovolskaya A.S., Popov N.A., Firsov A.A. Re-Breakdown Process at Longitudinal-transverse Discharge in a Supersonic Airflow // Plasma Phys. Rep. 2023. V. 49. № 5. P. 575.
  8. Tarasov D.A., Firsov A.A. CFD Simulation of DC-discharge in Airflow // J. Phys.: Conf. Ser. 2021. V. 2100. № 1. P. 012015.
  9. Liu Q., Baccarella D., Lee T. Review of Combustion Stabilization for Hypersonic Airbreathing Propulsion // Progress in Aerospace Sciences. 2020. V. 119. P. 100636.
  10. Mahesh K. The Interaction of Jets with Crossflow // Annu. Rev. Fluid Mech. 2013. V. 45. № 1. P. 379.
  11. Ben-Yakar A., Mungal M.G., Hanson R.K. Time Evolution and Mixing Characteristics of Hydrogen and Ethylene Transverse Jets in Supersonic Crossflows // Phys. Fluids. 2006. V. 18. № 2. P. 026101.
  12. Cai Z., Gao F., Wang H., Ma C., Yang T. Numerical Study on Transverse Jet Mixing Enhanced by High Frequency Energy Deposition // Energies (Basel). 2022. V. 15. № 21. P. 8264.
  13. Wang H., Yang Y., Hu W., Wang G., Xie F., Fan X. Mechanism of a Transverse Jet Mixing Enhanced by High-frequency Plasma Energy Deposition // Phys. Fluids. 2023. V. 35. № 9. P. 096101.
  14. Долгов Е.В., Колосов Н.С., Фирсов А.А. Исследование влияния искрового разряда на смешение струи газообразного топлива со сверхзвуковым воздушным потоком // Компьютерные исследования и моделирование. 2019. Т. 11. № 5. С. 849.
  15. Aksenov A.A., Zhluktov S.V., Kashirin V.S., Sazonova M.L., Cherny S.G., Zeziulin I.V., Kalugina M.D. Three-dimensional Numerical Model of Kerosene Evaporation in Gas Turbine Combustors // Supercomput. Front. Innov. 2023. V. 10. № 4. P. 27.
  16. Жлуктов С.В., Аксёнов А.А. Пристеночные функции для высокорейнольдсовых расчетов в программном комплексе FlowVision // Компьютерные исследования и моделирование. 2015. Т. 7. № 6. С. 1221.
  17. Волков Л.С., Фирсов А.А. Моделирование влияния импульсно-периодического нагрева на формирование возмущений на границе поперечной струи в сверхзвуковом потоке // Компьютерные исследования и моделирование. 2023. Т. 15. № 4. С. 845.
  18. Santiago J.G., Dutton J.C. Velocity Measurements of a Jet Injected into a Supersonic Crossflow // J. Propuls. Power. 1997. V. 13. № 2. P. 264.
  19. Rasheed I., Mishra D.P. Numerical Study of a Sonic Jet in a Supersonic Crossflow over a Flat Plate // Phys. Fluids. 2020. V. 32. № 12. P. 126113.
  20. Capitelli M., Colonna G., Gorse C., D’Angola A. Transport Properties of High Temperature Air in Local Thermodynamic Equilibrium // Europ. Phys. J. D. 2000. V. 11. № 2. P. 279.
  21. Catalfamo C., Bruno D., Colonna G., Laricchiuta A., Capitelli M. High Temperature Mars Atmosphere. Part II: Transport Properties // Europ. Phys. J. D. 2009. V. 54. № 3. P. 613.
  22. Василяк Л.М., Красночуб А.В. Метод измерения поглощенной энергии в электрических разрядах наносекундной длительности // Электронная обработка материалов. 2013. Т. 59. № 5. С. 74.
  23. Correale G., Winkel R., Kotsonis M. Energy Deposition Characteristics of Nanosecond Dielectric Barrier Discharge Plasma Actuators: Influence of Dielectric Material // J. Appl. Phys. 2015. V. 118. № 8. P. 083301.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».