Multifactorial effects of Lactobacillus paracasei DG in the regulation of the microbial-tissue complex: A review

Cover Page

Cite item

Full Text

Abstract

The human gut microbiome is a complex biological system whose functions and metabolic processes are the result of multiple interactions between microbial groups. Within these groups and between them, specific relationships are formed that allow duplicating and reserving individual functions, systematically managing their implementation and, in general, ensuring the reliable functioning of the entire microbiome, including in the interests of the host macroorganism. The functional and metabolic microbial nucleus plays a crucial role in the functioning of microbiocenosis as a whole system. Due to its natural properties, the modern probiotic Lactobacillus paracasei DG performs the function of a conductor of the microbiocenosis of the gastrointestinal tract, regulating the metabolic activity of the intestinal normoflora, realizing immunotropic effects due to the production of exopolysaccharides, including previously unknown exopolysaccharides b, maintaining the integrity of the intestinal epithelial barrier, exerting antiviral action, exerting distant effects against microbiocenoses of other ecological niches.

About the authors

Sergey M. Zakharenko

Federal State-Financed Institution Pediatric Research and Clinical Center for Infectious Diseases

Author for correspondence.
Email: zaharenko.sm@niidi.ru
ORCID iD: 0000-0001-8666-6118

канд. мед. наук, доц., зам. дир. 

Russian Federation, Saint Petersburg

References

  1. Doré J, Multon MC, Béhier JM; Participants of Giens XXXII, Round Table No 2. The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect? Therapie. 2017;72(1):21-38. doi: 10.1016/j.therap.2016.12.007
  2. Martini E, Krug SM, Siegmund B, et al. Mend your fences: The epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell Mol Gastroenterol Hepatol. 2017;4(1):33-46. doi: 10.1016/j.jcmgh.2017.03.007
  3. Венцловайте Н.Д., Горячева Л.Г., Гончар Н.В., и др. Патогенетическая связь между состоянием микробиоты кишечника и заболеваниями печени. Инфекционные болезни: новости, мнения, обучение. 2022;11(2):97-105 [Ventslovayte ND, Goriacheva LG, Gonchar NV, et al. Pathogenetic relationship between the condition gut microbiota and liver diseases. Infektsionnye bolezni: novosti, mneniya, obuchenie = Infectious Diseases: News, Opinions, Training. 2022;11(2):97-105 (in Russian)]. doi: 10.33029/2305-3496-2022-11-2-97-105
  4. Al-Rashidi HE. Gut microbiota and immunity relevance in eubiosis and dysbiosis. Saudi J Biol Sci. 2022;29(3):1628-43. doi: 10.1016/j.sjbs.2021.10.068
  5. Ефремова Н.А., Никифорова А.О., Грешнякова В.А. Изменение состава кишечной микробиоты у пациентов с хроническим гепатитом C, неалкогольной жировой болезнью печени на различных стадиях заболеваний печени. Морская медицина. 2023;9(3):24-39 [Efremova NA, Nikiforova AO, Greshnyakova VA. Changes in the composition of gut microbiota in patients with chronic hepatitis C, non-alcoholic fatty liver disease at different stages of liver disease. Marine Medicine. 2023;9(3):24-39 (in Russian)]. doi: 10.22328/2413-5747-2023-9-3-24-39
  6. Stolfi C, Maresca C, Monteleone G, Laudisi F. Implication of intestinal barrier dysfunction in gut dysbiosis and diseases. Biomedicines. 2022;10(2):289. doi: 10.3390/biomedicines10020289
  7. Camilleri M, Madsen K, Spiller R, et al. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012;24(6):503-12. doi: 10.1111/j.1365-2982.2012.01921.x
  8. Lechuga S, Ivanov AI. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. Biochim Biophys Acta Mol Cell Res. 2017;1864(7):1183-94. doi: 10.1016/j.bbamcr.2017.03.007
  9. Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: Pathophysiology and clinical implications. Curr Opin Gastroenterol. 2007;23(4):379-83. doi: 10.1097/MOG.0b013e32816aa392
  10. Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3-20; quiz 21-2. doi: 10.1016/j.jaci.2009.05.038
  11. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1-9. doi: 10.1038/s12276-018-0126-x
  12. Obrenovich MEM. Leaky gut, leaky brain? Microorganisms. 2018;6(4):107. doi: 10.3390/microorganisms6040107
  13. Carloni S, Rescigno M. Unveiling the gut-brain axis: structural and functional analogies between the gut and the choroid plexus vascular and immune barriers. Semin Immunopathol. 2022;44(6):869-82. doi: 10.1007/s00281-022-00955-3
  14. Gasaly N, de Vos P, Hermoso MA. Impact of bacterial metabolites on gut barrier function and host immunity: A focus on bacterial metabolism and its relevance for intestinal inflammation. Front Immunol. 2021;12:658354. doi: 10.3389/fimmu.2021.658354
  15. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533
  16. Masterson D. "Total microbiome company" is bringing microbiome innovation to the masses. 2022. Available at: https://www.nutraingredients-usa.com/Article/2022/09/08/total-microbiome-company-is-bringing-microbiome-innovation-to-the-masses. Accessed: 16.12.2023.
  17. Hugon P, Dufour JC, Colson P, et al. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis. 2015;15(10):1211-9. doi: 10.1016/S1473-3099(15)00293-5
  18. Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5(1):153. doi: 10.1186/s40168-017-0373-4
  19. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. doi: 10.3390/microorganisms7010014
  20. Flint HJ, Bayer EA, Rincon MT, et al. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6(2):121-31. doi: 10.1038/nrmicro1817
  21. Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016;24(5):402-13. doi: 10.1016/j.tim.2016.02.002
  22. Qin J, Li R, Raes J, Arumugam M, et al.; MetaHIT Consortium; Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi: 10.1038/nature08821
  23. Forster SC, Kumar N, Anonye BO, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol. 2019;37(2):186-92. doi: 10.1038/s41587-018-0009-7
  24. Zelezniak A, Andrejev S, Ponomarova O, et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112(20):6449-54. doi: 10.1073/pnas.1421834112
  25. Hall CV, Lord A, Betzel R, et al. Co-existence of network architectures supporting the human gut microbiome. iScience. 2019;22:380-91. doi: 10.1016/j.isci.2019.11.032
  26. Haffner JJ, Katemauswa M, Kagone TS, et al. The core human fecal metabolome. bioRxiv. 2021.05.08.442269. doi: 10.1101/2021.05.08.442269
  27. Human Microbiome Market Size & Share, by Product (Probiotics, Prebiotics, Diagnostic Tests, Drugs); Disease Type (Infectious Disease, Obesity, Diabetes, Gastrointestinal Diseases, Cancer, Cardiovascular Diseases); Organism Type (Aerobic Organisms, Obligate & Facultative Anaerobes, Genetically Engineered Strains, BSL-2 & Spore-Forming Species); Application (Therapeutics, Diagnostics) – Global Supply & Demand Analysis, Growth Forecasts, Statistics Report 2023–2035. Available at: https://www.researchnester.com/reports/human-microbiome-market/4062. Accessed: 16.12.2023.
  28. Human Microbiome Market (4th Edition): Focus on Therapeutics, Diagnostics and Fecal Microbiota Therapy: Distribution by Type of Molecule (Small Molecule and Biologic), Type of Product (Probiotic Drugs and Other Drugs), Target Indication. Industry Trends and Global Forecasts, 2022–2035. Available at: https://www.giiresearch.com/report/root1071905-human-microbiome-market-4th-edition-focus-on.html. Accessed: 16.12.2023.
  29. Balzaretti S, Taverniti V, Guglielmetti S, et al. A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Appl Environ Microbiol. 2017;83(3):e02702-16. doi: 10.1128/AEM.02702-16
  30. Radicioni M, Koirala R, Fiore W, et al. Survival of L. casei DG® (Lactobacillus paracasei CNCMI1572) in the gastrointestinal tract of a healthy paediatric population. Eur J Nutr. 2019;58(8):3161-70. doi: 10.1007/s00394-018-1860-5
  31. Arioli S, Koirala R, Taverniti V, et al. Quantitative recovery of viable Lactobacillus paracasei CNCM I-1572 (L. casei DG®) after gastrointestinal passage in healthy adults. Front Microbiol. 2018;9:1720. doi: 10.3389/fmicb.2018.01720
  32. Altaha BM, Wadi J, Shehabi AA. Detection probiotic's DNA of Lactobacillus paracasei in healthy human faeces. J Pharm Res Int. 2018;23:44636. doi: 10.9734/JPRI/2018/44636
  33. Drago L, De Vecchi E, Valli M, Gismondo MR. Colonizzazione intestinale di Lactobacillus casei subsp. casei I-1572 CNCM (L. casei DG) in volontari sani e in topi germ-free. Farmaci e Terapia. 2002;19(1/2):72-6.
  34. Ferrario C, Taverniti V, Milani C, et al. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr. 2014;144(11):1787-96. doi: 10.3945/jn.114.197723
  35. Торшин И.Ю., Громова О.А., Максимов В.А., и др. Анализ штамм-специфичных эффектов лактобацилл L. casei DG (L. paracasei CNCM I-1572) и возможность их применения в клинической практике. Экспериментальная и клиническая гастроэнтерология. 2019;162(2):151-8 [Torshin IYu, Gromova OA, Maksimov VA, et al. Analysis of the strain-specific effects of lactobacilli L. casei DG (L. paracasei CNCM I-1572) and the possibility of their use in clinical practice. Experimental and Clinical Gastroenterology. 2019;162(2):151-8 (in Russian)]. doi: 10.31146/1682-8658-ecg-162-2-151-158
  36. Taverniti V, Cesari V, Gargari G, et al. Probiotics modulate mouse gut microbiota and influence intestinal immune and serotonergic gene expression in a site-specific fashion. Front Microbiol. 2021;12:706135. doi: 10.3389/fmicb.2021.706135
  37. Zambori C, Morvay AA, Sala C, et al. Antimicrobial effect of probiotics on bacterial species from dental plaque. J Infect Dev Ctries. 2016;10(3):214-21. doi: 10.3855/jidc.6800
  38. Cremon C, Guglielmetti S, Gargari G, et al. Effect of Lactobacillus paracasei CNCM I-1572 on symptoms, gut microbiota, short chain fatty acids, and immune activation in patients with irritable bowel syndrome: A pilot randomized clinical trial. United European Gastroenterol J. 2018;6(4):604-13. doi: 10.1177/2050640617736478
  39. Хлынов И.Б., Хлынова Р.И., Воронова Е.И., и др. Эффективность и безопасность Lactobacillus paracasei CNCM I-1572 и фруктоолигосахаридов в лечении больных СРК с запором. Экспериментальная и клиническая гастроэнтерология. 2021;190(6):57-62 [Khlinov IB, Khlynova RI, Voronova EI, et al. Efficacy and safety of Lactobacillus paracasei CNCM I-1572 and fructo-oligosaccharides in the treatment of patients with irritable bowel syndrome with constipation. Experimental and Clinical Gastroenterology. 2021;1(6):57-62 (in Russian)]. doi: 10.31146/1682-8658-ecg-190-6-57-62
  40. Compare D, Rocco A, Coccoli P, et al. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: An ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol. 2017;17(1):53. doi: 10.1186/s12876-017-0605-x
  41. Turco F, Andreozzi P, Palumbo I, et al. Bacterial stimuli activate nitric oxide colonic mucosal production in diverticular disease. Protective effects of L. casei DG® (Lactobacillus paracasei CNCM I-1572). United European Gastroenterol J. 2017;5(5):715-24. doi: 10.1177/2050640616684398
  42. Tursi A, Brandimarte G, Giorgetti GM, Elisei W. Mesalazine and/or Lactobacillus casei in preventing recurrence of symptomatic uncomplicated diverticular disease of the colon: A prospective, randomized, open-label study. J Clin Gastroenterol. 2006;40(4):312-6. doi: 10.1097/01.mcg.0000210092.77296.6d
  43. Tursi A, Brandimarte G, Elisei W, et al. Randomised clinical trial: Mesalazine and/or probiotics in maintaining remission of symptomatic uncomplicated diverticular disease – A double-blind, randomised, placebo-controlled study. Aliment Pharmacol Ther. 2013;38(7):741-51. doi: 10.1111/apt.12463
  44. Casula E, Pisano MB, Serreli G, et al. Probiotic lactobacilli attenuate oxysterols-induced alteration of intestinal epithelial cell monolayer permeability: Focus on tight junction modulation. Food Chem Toxicol. 2023;172:113558. doi: 10.1016/j.fct.2022.113558
  45. Топчий Т.Б., Ардатская М.Д., Буторова Л.И., и др. Особенности состояния кишечника на фоне новой коронавирусной инфекции. Терапевтический архив. 2022;92(7):920-6 [Topchiy TВ, Ardatskaya MD, Butorova LI, et al. Features of the intestine conditions at patients with a new coronavirus infection. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(7):920-6 (in Russian)]. doi: 10.26442/00403660.2022.07.201768
  46. Ахмедов В.А. Коррекция нарушений микробного состава кишечника как потенциальное звено в комплексной терапии пациентов с COVID-19. Терапевтический архив. 2022;94(2):277-82 [Akhmedov VA. Correction of intestinal microbial composition disturbances as a potential link in complex therapy of patients with COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(2):277-82 (in Russian)]. doi: 10.26442/00403660.2022.02.201388
  47. Паценко М.Б., Ардатская М.Д., Анучкин А.А., и др. Отдаленные последствия COVID-19 у пациентов с функциональными расстройствами кишечника, реабилитационные возможности микробиоценоз-ориентированной терапии. Терапевтический архив. 2023;95(12):1119-27 [Patsenko MB, Ardatskaya MD, Anuchkin AA, et al. Long-term consequences of COVID-19 in patients with functional bowel disorders, rehabilitation prospective of microbiocenosis-oriented therapy. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(12):1119-27 (in Russian)]. doi: 10.26442/00403660.2023.12.202523
  48. Salaris C, Scarpa M, Elli M, et al. Lacticaseibacillus paracasei DG enhances the lactoferrin anti-SARS-CoV-2 response in Caco-2 cells. Gut Microbes. 2021;13(1):1961970. doi: 10.1080/19490976.2021.1961970
  49. Castagliuolo I, Scarpa M, Brun P, et al. Co-administration of vitamin D3 and Lacticaseibacillus paracasei DG increase 25-hydroxyvitamin D serum levels in mice. Ann Microbiol. 2021;71(1):42. doi: 10.1186/s13213-021-01655-3
  50. Карахалис Л.Ю., Жигаленко А.Р., Доценко С.В., Воронкова В.В. Подготовка пациенток с хроническим эндометритом к процедуре вспомогательных репродуктивных технологий. Акушерство и гинекология. 2023;12:152-7 [Karakhalis LYu, Zhigalenko AR, Dotsenko SV, Voronkova VV. Preparation of patients with chronic endometritis for the procedure of assisted reproductive technologies. Akusherstvo i Ginekologiya = Obstetrics and Gynecology. 2023;12:152-7 (in Russian)]. doi: 10.18565/aig.2023.291
  51. Cai T, Gallelli L, Cione E, et al. The use of Lactobacillus casei DG® prevents symptomatic episodes and reduces the antibiotic use in patients affected by chronic bacterial prostatitis: Results from a phase IV study. World J Urol. 2021;39(9):3433-40. doi: 10.1007/s00345-020-03580-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».