Radiomics capabilities in the interpretation of ultrasound and CT data in patients with chronic kidney disease: A review

Cover Page

Cite item

Full Text

Abstract

The purpose of this review is to explore the possibilities of radiomics in interpreting ultrasound and multislice spiral computed tomography data in patients with chronic kidney disease (CKD). Radiomics is a promising area of medical image analysis based on the extraction of quantitative features not available in standard visual analysis and the subsequent use of artificial intelligence methods for their processing and interpretation. The article discusses the basics of radiomic methods, including texture analysis of images and the creation of diagnostic models using machine learning algorithms. The advantages of radiomic characteristics, in particular statistical features of order II and higher orders, in assessing interstitial fibrosis and other abnormal changes in the renal parenchyma are discussed in detail. The results of studies demonstrating a strong correlation of radiomic signs with histological changes detected during kidney biopsy are presented. The prospects of radiomics as a non-invasive approach for assessing kidney damage and monitoring CKD progression are emphasized. The conclusion indicates the need for further research to standardize and expand the use of radiomic methods in clinical practice to improve the diagnosis accuracy and prognostic assessment of patients with CKD.

About the authors

Alexandra V. Proskura

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: proskura_a_v_1@staff.sechenov.ru
ORCID iD: 0000-0003-0441-4799

канд. мед. наук, врач-уролог, онколог, ассистент Института урологии и репродуктивного здоровья человека 

Russian Federation, Moscow

Khalil M. Ismailov

Sechenov First Moscow State Medical University (Sechenov University)

Email: proskura_a_v_1@staff.sechenov.ru
ORCID iD: 0000-0003-0548-190X

врач-уролог, аспирант Института урологии и репродуктивного здоровья человека 

Russian Federation, Moscow

Alexander G. Smoleevskiy

Sechenov First Moscow State Medical University (Sechenov University)

Email: proskura_a_v_1@staff.sechenov.ru
ORCID iD: 0000-0002-8771-8589

ординатор Института урологии и репродуктивного здоровья человека 

Russian Federation, Moscow

Amina I. Salpagarova

Sechenov First Moscow State Medical University (Sechenov University)

Email: proskura_a_v_1@staff.sechenov.ru
ORCID iD: 0009-0006-9642-7202

студентка IV курса Института клинической медицины им. Н.В. Склифосовского 

Russian Federation, Moscow

Irina N. Bobkova

Sechenov First Moscow State Medical University (Sechenov University)

Email: proskura_a_v_1@staff.sechenov.ru
ORCID iD: 0000-0002-8007-5680

д-р мед. наук, проф. каф. внутренних и профессиональных болезней и ревматологии Института клинической медицины им. Н.В. Склифосовского 

Russian Federation, Moscow

Andrei M. Shestiuk

Brest Regional Clinical Hospital

Email: proskura_a_v_1@staff.sechenov.ru
ORCID iD: 0000-0002-2624-5773

канд. мед. наук, доц., зав. отд-нием трансплантологии 

Belarus, Brest

References

  1. Pirrone G, Matrone F, Chiovati P, et al. Predicting local failure after partial prostate re-irradiation using a dosiomic-based machine learning model. J Pers Med. 2022;12(9):1491. doi: 10.3390/jpm12091491
  2. Miranda Magalhaes Santos JM, Clemente Oliveira B, Araujo-Filho JAB, et al. State-of-the-art in radiomics of hepatocellular carcinoma: A review of basic principles, applications, and limitations. Abdominal Radiology (NY). 2020;45(2):342-53. doi: 10.1007/s00261-019-02299-3
  3. Shin J, Seo N, Baek SE, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy. Radiology. 2022;303(2):351-8. doi: 10.1148/radiol.211986
  4. Vicini S, Bortolotto C, Rengo M, et al. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: Focus on the three most common cancers. Radiol Med. 2022;127(8):819-36. doi: 10.1007/s11547-022-01512-6
  5. Wu L, Lou X, Kong N, et al. Can quantitative peritumoral CT radiomics features predict the prognosis of patients with non-small cell lung cancer? A systematic review. Eur Radiol. 2023;33(3):2105-17. doi: 10.1007/s00330-022-09174-8
  6. Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features. Radiology. 2021;298(3):505-16. doi: 10.1148/radiol.2021202553
  7. Li H, Gao L, Ma H, et al. Radiomics-based features for prediction of histological subtypes in Central Lung Cancer. Front Oncol. 2021;11:658887. doi: 10.3389/fonc.2021.658887
  8. Mukherjee P, Cintra M, Huang C, et al. CT-based radiomic signatures for predicting histopathologic features in head and neck squamous cell carcinoma. Radiol Imaging Cancer. 2020;2(3):e190039. doi: 10.1148/rycan.2020190039
  9. Wang M, Perucho JAU, Hu Y, et al. Computed Tomographic Radiomics in differentiating histologic subtypes of epithelial ovarian carcinoma. JAMA Netw Open. 2022;5(12):e2245141. doi: 10.1001/jamanetworkopen.2022.45141
  10. Park HJ, Lee SS, Park B, et al. Radiomics analysis of gadoxetic acid-enhanced MRI for staging liver fibrosis. Radiology. 2019;290(2):380-7. doi: 10.1148/radiol.2018181197
  11. Meng J, Luo Z, Chen Z, et al. Intestinal fibrosis classification in patients with Crohn’s disease using CT enterography-based deep learning: Comparisons with radiomics and radiologists. Eur Radiol. 2022;32(12):8692-705. doi: 10.1007/s00330-022-08842-z
  12. Refaee T, Salahuddin Z, Frix AN, et al. Diagnosis of idiopathic pulmonary fibrosis in high-resolution computed tomography scans using a combination of handcrafted radiomics and deep learning. Front Med (Lausanne). 2022;9:915243. doi: 10.3389/fmed.2022.915243
  13. Herzenberg AM, Fogo AB, Reich HN, et al. Validation of the Oxford classification of IgA nephropathy. Kidney Int. 2011;80(3):310-7. doi: 10.1038/ki.2011.126
  14. Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556-63. doi: 10.1681/ASN.2010010010
  15. Srivastava A, Palsson R, Kaze AD, et al. The prognostic value of histopathologic lesions in native kidney biopsy specimens: results from the Boston kidney biopsy cohort study. J Am Soc Nephrol. 2018;29(8):2213-24. doi: 10.1681/ASN.2017121260
  16. Canetta PA, Khairallah P, Kiryluk K, et al. Systematic review and meta-analysis of native kidney biopsy complications. Clin J Am Soc Nephrol. 2020;15(11):1595-602. doi: 10.2215/CJN.04710420
  17. Barinotti A, Radin M, Cecchi I, et al. Serum biomarkers of renal fibrosis: A systematic review. Int J Mol Sci. 2022;23(22):14139. doi: 10.3390/ijms232214139
  18. Huang E, Mengel M, Clahsen-van Groningen MC, Jackson AM. Diagnostic potential of minimally invasive biomarkers: A biopsy-centered viewpoint from the Banff Minimally Invasive Diagnostics Working Group. Transplantation. 2023;107(1):45-52. doi: 10.1097/TP.0000000000004339
  19. Ce M, Felisaz PF, Ali M, et al. Ultrasound elastography in chronic kidney disease: A systematic review and meta-analysis. J Med Ultrason (2001). 2023;50(3):381-415. doi: 10.1007/s10396-023-01304-z
  20. Buchanan CE, Mahmoud H, Cox EF, et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrol Dial Transpl. 2020;35(6):955-64. doi: 10.1093/ndt/gfz129
  21. Bandara MS, Gurunayaka B, Lakraj G, et al. Ultrasound based radiomics features of chronic kidney disease. Acad Radiol. 2022;29(2):229-35. doi: 10.1016/j.acra.2021.01.006
  22. Choi YH, Kim JE, Lee RW, et al. Histopathological correlations of CT-based radiomics imaging biomarkers in native kidney biopsy. BMC Medical Imaging. 2024;24(1):256. doi: 10.1186/s12880-024-01434-x
  23. Beck-Tölly A, Eder M, Beitzke D, et al. Magnetic resonance imaging for evaluation of interstitial fibrosis in kidney allografts. Transplant Direct. 2020;6(8):e577. doi: 10.1097/TXD.0000000000001009
  24. Berchtold L, Crowe LA, Combescure C, et al. Diffusion-magnetic resonance imaging predicts decline of kidney function in chronic kidney disease and in patients with a kidney allograft. Kidney Int. 2022;101(4):804-13. doi: 10.1016/j.kint.2021.12.014

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The process of creating a test model in radiomics [1].

Download (177KB)
3. Fig. 2. Illustration comparing the possibilities of statistics of the I and II orders [2].

Download (133KB)
4. Fig. 3. Voxel map of high-order textural features [22].

Download (222KB)

Copyright (c) 2025 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).