Current prospects of fluoroquinolones: pazufloxacin. A review

Cover Page

Cite item

Full Text

Abstract

Fluoroquinolones (FQ) are one of the most valuable groups of antibacterial drugs in clinical practice. Ciprofloxacin and levofloxacin are drugs with the largest contribution to the structure of FQ consumption both in the Russian Federation and in the world. The widespread use of FQ in recent years has been accompanied by an intensive growth of antibiotic resistance of the main pathogens, including those from the ESKAPE group, which limits the possibilities of effective antibiotic therapy for a wide range of infectious diseases. In this situation, we have an attractive possibility of including a new FQ for the Russian pharmaceutical market, pazufloxacin, in the treatment regimens for patients with infectious diseases. This is a third-generation FQ, whose spectrum of antibacterial action, as has been demonstrated in the published studies, is close to that of the beta-lactam ABP ceftazidime. The studies considered in our narrative review indicate a high level of clinical efficacy and safety of this FQ, which suggests broad prospects for its use in the treatment of infectious diseases taking in account accelerated antibiotic resistance.

About the authors

Olga I. Butranova

Peoples' Friendship University of Russia named after Patrice Lumumba

Author for correspondence.
Email: butranova-oi@rudn.ru
ORCID iD: 0000-0001-7729-2169

канд. мед. наук, доц. каф. общей и клинической фармакологии Медицинского института 

Russian Federation, Moscow

Sergey K. Zyryanov

Peoples' Friendship University of Russia named after Patrice Lumumba; City Clinical Hospital No. 24

Email: butranova-oi@rudn.ru
ORCID iD: 0000-0002-6348-6867

д-р мед. наук, проф., зав. каф. общей и клинической фармакологии ФГАОУ ВО РУДН, зам. глав. врача ГБУЗ ГКБ №24

Russian Federation, Moscow; Moscow

Anna R. Melnikova

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: butranova-oi@rudn.ru
ORCID iD: 0009-0002-1474-5014

студентка Медицинского института 

Russian Federation, Moscow

Anastasia E. Matsepuro

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: butranova-oi@rudn.ru
ORCID iD: 0009-0000-1961-609X

студентка Медицинского института 

Russian Federation, Moscow

References

  1. Bala A, Uhlin BE, Karah N. Insights into the genetic contexts of sulfonamide resistance among early clinical isolates of Acinetobacter baumannii. Infect Genet Evol. 2023;112:105444. doi: 10.1016/j.meegid.2023.105444
  2. Rammelkamp CH, Maxon T. Resistance of Staphylococcus aureus to the Action of Penicillin. Experimental Biology and Medicine. 2013;51(3):386-8. doi: 10.3181/00379727-51-13986
  3. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2021 (GBD 2021) Cause-Specific Mortality 1990–2021. Seattle, United States of America: Institute for Health Metrics and Evaluation (IHME), 2024. doi: 10.6069/4fgf-3t54
  4. GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404(10459):1199-226. doi: 10.1016/S0140-6736(24)01867-1
  5. Янушевич О.О., Маев И.В., Крихели Н.И., и др. Исследование резистома микробных сообществ человека с помощью таргетной панели генов антибиотикорезистентности у пациентов с COVID-19. Терапевтический архив. 2024;95(12):1103-11 [Yanushevich OO. Study of the resistome of human microbial communities using a targeted panel of antibiotic resistance genes in COVID-19 patients. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;95(12):1103-11 (in Russian)]. doi: 10.26442/00403660.2023.12.202490
  6. Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol. 2024;22(10):598-616. doi: 10.1038/s41579-024-01054-w
  7. Куприянова Е.А., Абдулхаков С.Р., Исмагилова Р.К., и др. Распространенность мутаций, определяющих формирование резистентности Helicobacter pylori к антибактериальным препаратам, в городе Казани. Терапевтический архив. 2024;96(8):739-43 [Kupriyanova EA, Abdulkhakov SR, Ismagilova RK, et al. The prevalence of mutations underlying development of Helicobacter pylori resistance to antibiotics in Kazan. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(8):739-43 (in Russian)]. doi: 10.26442/00403660.2024.08.202813
  8. Гомон Ю.М., Колбин А.С., Арепьева М.А., и др. Потребление антимикробных препаратов в РФ в 2008–2022 гг.: фармакоэпидемиологическое исследование. Клиническая микробиология и антимикробная химиотерапия. 2023;25(4):395-400 [Gomon YuM, Kolbin AS, Arepyeva MA, et al. Antimicrobial drug consumption in the Russian Federation (2008–2022): pharmacoepidemiological study. Clinical Microbiology and Antimicrobial Chemotherapy. 2023;25(4):395-400 (in Russian)]. doi: 10.36488/cmac.2023.4.395-400
  9. Adriaenssens N, Bruyndonckx R, Versporten A, et al. Consumption of quinolones in the community, European Union/European Economic Area, 1997–2017. J Antimicrob Chemother. 2021;76(12 Suppl. 2):ii37-i4. doi: 10.1093/jac/dkab176
  10. Захаренков И.А., Рачина С.А., Козлов Р.С., Белькова Ю.А. Потребление системных антибиотиков в России в 2017–2021 гг.: основные тенденции. Клиническая микробиология и антимикробная химиотерапия. 2022;24(3):220-5 [Zakharenkov IA, Rachina SA, Kozlov RS, Belkova YuA. Consumption of systemic antibiotics in the Russian Federation in 2017–2021. Clinical Microbiology and Antimicrobial Chemotherapy. 2022;24(3):220-5 (in Russian)]. doi: 10.36488/cmac.2022.3.220-225
  11. Lo CL, Lee CC, Li CW, et al. Fluoroquinolone therapy for bloodstream infections caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. J Microbiol Immunol Infect. 2017;50(3):355-61. doi: 10.1016/j.jmii.2015.08.012
  12. Meije Y, Pigrau C, Fernández-Hidalgo N, et al. Non-intravenous carbapenem-sparing antibiotics for definitive treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase: A propensity score study. Int J Antimicrob Agents. 2019;54(2):189-96. doi: 10.1016/j.ijantimicag.2019.05.004
  13. Склеенова Е.Ю., Азизов И.С., Шек Е.А., и др. Pseudomonas aeruginosa в РФ: история одного из наиболее успешных нозокомиальных патогенов. Клиническая Микробиология и Антимикробная Химиотерапия. 2018;20(3):164-71 [Skleenova EYu, Azyzov IS, Shek EA, et al. Pseudomonas aeruginosa: the history of one of the most successful nosocomial pathogens in Russian hospitals. Clinical Microbiology and Antimicrobial Chemotherapy. 2018;20(3):164-71 (in Russian)]. doi: 10.36488/cmac.2018.3.164-171
  14. Белобородов В.Б., Голощапов О.В., Гусаров В.Г., и др. Диагностика и антимикробная терапия инфекций, вызванных полирезистентными микроорганизмами (обновление 2024 года). Вестник анестезиологии и реаниматологии. 2025;22(2):149-89 [Beloborodov VB, Goloschapov OV, Gusarov VG, et al. Guidelines of the Association of Anesthesiologists-Intensivists, the Interregional Non-Governmental Organization Alliance of Clinical Chemotherapists and Microbiologists, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), and NGO Russian Sepsis Forum "Diagnostics and antimicrobial therapy of the infections caused by multiresistant microorganisms" (update 2024). Messenger of Anesthesiology and Resuscitation. 2025;22(2):149-89 (in Russian)]. doi: 10.21292/2078-5658-2022-19-2-84-114
  15. Mareș C, Petca RC, Popescu RI, et al. Update on Urinary Tract Infection Antibiotic Resistance-A Retrospective Study in Females in Conjunction with Clinical Data. Life (Basel). 2024;14(1):106. doi: 10.3390/life14010106
  16. Hirai S, Tanaka K, Makino S, Narita H. Adverse drug interactions between pyridonecarboxylic acids and nonsteroidal antiinflammatory drugs: convulsion after oral or intracerebral administration in mice. Yakugaku Zasshi. 1989;109(2):119-26 (in Japanese). doi: 10.1248/yakushi1947.109.2_119
  17. Minami S, Hattori R, Matsuda A. Pharmacological properties and expected clinical role of an injectable new quinolone antibiotic, pazufloxacin mesilate. Nihon Yakurigaku Zasshi. 2003;122(2):161-78 (in Japanese). doi: 10.1254/fpj.122.161
  18. Nakamura K, Ikawa K, Nishikawa G, et al. Clinical pharmacokinetics and pharmacodynamic target attainment of pazufloxacin in prostate tissue: Dosing considerations for prostatitis. J Infect Chemother. 2017;23(12):809-13. doi: 10.1016/j.jiac.2017.08.005
  19. Cao G, Zhu Y, Xie X, et al. Pharmacokinetics and pharmacodynamics of levofloxacin in bronchial mucosa and lung tissue of patients undergoing pulmonary operation. Exp Ther Med. 2020;20(1):607-16. doi: 10.3892/etm.2020.8715
  20. Van't Boveneind-Vrubleuskaya N, Seuruk T, van Hateren K, et al. Pharmacokinetics of Levofloxacin in Multidrug and Extensively Drug-Resistant Tuberculosis Patients. Antimicrob Agents Chemother. 2017;61(8):e00343-17. doi: 10.1128/AAC.00343-17
  21. Stass H, Dalhoff A, Kubitza D, Schühly U. Pharmacokinetics, safety, and tolerability of ascending single doses of moxifloxacin, a new 8-methoxy quinolone, administered to healthy subjects. Antimicrob Agents Chemother. 1998;42(8):2060-5. doi: 10.1128/AAC.42.8.2060
  22. Yamaki K, Hasegawa T, Matsuda I, et al. Pharmacokinetic Characteristics of a New Fluoroquinolone, Pazufloxacin, in Elderly Patients. Journal of Infection and Chemotherapy. 2006;3(2):97-102. doi: 10.1007/bf02490182
  23. Tanaka A, Takada T, Kawarada Y, et al. Antimicrobial therapy for acute cholangitis: Tokyo Guidelines. J Hepatobiliary Pancreat Surg. 2007;14(1):59-67. doi: 10.1007/s00534-006-1157-6
  24. Kohno S, Aoki N, Kawai S, et al. A clinical phase III study of pazufloxacin in patients with bacterial pneumonia. Japanese Journal of Chemotherapy. 2010;58:664-80.
  25. Araki H, Ogake N, Tsuneda R, et al. Muscle distribution of antimicrobial agents after a single intravenous administration to rats. Drug Metab Pharmacokinet. 2002;17(3):237-44. doi: 10.2133/dmpk.17.237
  26. Phapale PB, Lee HW, Kim S, et al. Analysis of Pazufloxacin Mesilate in Human Plasma and Urine by LC with Fluorescence and UV Detection, and Its Application to Pharmacokinetic Study. Chroma. 2009;71(1-2):101-10. doi: 10.1365/s10337-009-1408-1
  27. DrugBank Online. Nalidixic acid. Available at: https://go.drugbank.com/drugs/DB00779. Accessed: 01.12.2024.
  28. Fabre D, Bressolle F, Gomeni R, et al. Steady-state pharmacokinetics of ciprofloxacin in plasma from patients with nosocomial pneumonia: penetration of the bronchial mucosa. Antimicrob Agents Chemother. 1991;35(12):2521-5. doi: 10.1128/AAC.35.12.2521
  29. DrugBank Online. Levofloxacin. Available at: https://go.drugbank.com/drugs/DB01137. Accessed: 01.12.2024.
  30. Brouwers JR. Drug interactions with quinolone antibacterials. Drug Saf. 1992;7(4):268-81. doi: 10.2165/00002018-199207040-00003
  31. Niki Y, Watanabe S, Yoshida K, et al. Effect of pazufloxacin mesilate on the serum concentration of theophylline. J Infect Chemother. 2002;8(1):33-6. doi: 10.1007/s101560200003
  32. Lou S, Li W, Hu Q. Influence of cefoperazone and azithromycin on the pharmacokinetics of pazufloxacin in rats. Eur J Drug Metab Pharmacokinet. 2007;32(4):219-23. doi: 10.1007/BF03191007
  33. Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules. 2020;25(23):5662. doi: 10.3390/molecules25235662
  34. Millanao AR, Mora AY, Villagra NA, et al. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules. 2021;26(23):7153. doi: 10.3390/molecules26237153
  35. Zhanel GG, Walkty A, Vercaigne L, et al. The new fluoroquinolones: A critical review. Can J Infect Dis. 1999;10(3):207-38. doi: 10.1155/1999/378394
  36. Takei M, Fukuda H, Kishii R, Hosaka M. Target preference of 15 quinolones against Staphylococcus aureus, based on antibacterial activities and target inhibition. Antimicrob Agents Chemother. 2001;45(12):3544-7. doi: 10.1128/AAC.45.12.3544-3547.2001
  37. Umezaki Y, Matsumoto K, Ikawa K, et al. Concentration-Dependent Activity of Pazufloxacin against Pseudomonas aeruginosa: An In Vivo Pharmacokinetic/Pharmacodynamic Study. Antibiotics (Basel). 2022;11(7):982. doi: 10.3390/antibiotics11070982
  38. Schentag JJ, Meagher AK, Forrest A. Fluoroquinolone AUIC break points and the link to bacterial killing rates. Part 2: human trials. Ann Pharmacother. 2003;37(10):1478-88. doi: 10.1345/aph.1C419
  39. Wang XG, Miao J, Liang DR, et al. Clinical pharmacokinetics/pharmacodynamics study on pazufloxacin methanesulphonate injection. Sichuan Da Xue Xue Bao Yi Xue Ban. 2009;40(4):689-93 (in Chinese).
  40. Sabo A, Tomas A, Tomić N, et al. Pharmacokinetic/pharmacodynamic based dosing of ciprofloxacin in complicated urinary tract infections. Bangladesh J Pharmacol. 2015;10(3):621. doi: 10.3329/bjp.v10i3.23604
  41. Murillo O, Pachón ME, Euba G, et al. High doses of levofloxacin vs moxifloxacin against staphylococcal experimental foreign-body infection: the effect of higher MIC-related pharmacokinetic parameters on efficacy. J Infect. 2009;58(3):220-6. doi: 10.1016/j.jinf.2009.01.005
  42. Van TT, Minejima E, Chiu CA, Butler-Wu SM. Don't Get Wound Up: Revised Fluoroquinolone Breakpoints for Enterobacteriaceae and Pseudomonas aeruginosa. J Clin Microbiol. 2019;57(7):e02072-18. doi: 10.1128/JCM.02072-18
  43. Li WR, Zhang ZQ, Liao K, et al. Pseudomonas aeruginosa heteroresistance to levofloxacin caused by upregulated expression of essential genes for DNA replication and repair. Front Microbiol. 2022;13:1105921. doi: 10.3389/fmicb.2022.1105921
  44. Malik M, Marks KR, Schwanz HA, et al. Effect of N-1/c-8 ring fusion and C-7 ring structure on fluoroquinolone lethality. Antimicrob Agents Chemother. 2010;54(12):5214-21. doi: 10.1128/AAC.01054-10
  45. Niu H, Yee R, Cui P, et al. Identification and Ranking of Clinical Compounds with Activity Against Log-phase Growing Uropathogenic Escherichia coli. Curr Drug Discov Technol. 2020;17(2):191-9. doi: 10.2174/1570163815666180808115501
  46. Sagara H, Yoshikawa K, Tomizawa I, et al. Basic and clinical studies of pazufloxacin on infectious enteritis research group of T-3761 on infectious enteritis. Kansenshogaku Zasshi. 1996;70(1):60-72 (in Japanese). doi: 10.11150/kansenshogakuzasshi1970.70.60
  47. Fukuyama M, Oonaka K, Hara M, Imagawa Y. In vitro antibacterial activity of pazufloxacin (PZFX) against clinical isolates from infectious enteritis. Kansenshogaku Zasshi. 1996;70(1):51-9 (in Japanese). doi: 10.11150/kansenshogakuzasshi1970.70.51
  48. Uegami S, Ikawa K, Ohge H, et al. Pharmacokinetics and pharmacodynamic target attainment of intravenous pazufloxacin in the bile of patients undergoing biliary pancreatic surgery. J Chemother. 2014;26(5):287-92. doi: 10.1179/1973947814Y.0000000167
  49. Mikamo H, Sato Y, Hayasaki Y, et al. In vitro activities of pazufloxacin, a novel injectable quinolone, against bacteria causing infections in obstetric and gynecological patients. Chemotherapy. 1999;45(3):154-7. doi: 10.1159/000007177
  50. Burgess DS, Hall RG 2nd. Simulated comparison of the pharmacodynamics of ciprofloxacin and levofloxacin against Pseudomonas aeruginosa using pharmacokinetic data from healthy volunteers and 2002 minimum inhibitory concentration data. Clin Ther. 2007;29(7):1421-7. doi: 10.1016/j.clinthera.2007.07.024
  51. Sun C, Hao J, Dou M, Gong Y. Mutant prevention concentrations of levofloxacin, pazufloxacin and ciprofloxacin for A. baumannii and mutations in gyrA and parC genes. J Antibiot (Tokyo). 2015;68(5):313-7. doi: 10.1038/ja.2014.150
  52. Higa F, Akamine M, Haranaga S, et al. In vitro activity of pazufloxacin, tosufloxacin and other quinolones against Legionella species. J Antimicrob Chemother. 2005;56(6):1053-7. doi: 10.1093/jac/dki391
  53. Miyashita N, Kobayashi I, Higa F, et al. In vitro activity of various antibiotics against clinical strains of Legionella species isolated in Japan. J Infect Chemother. 2018;24(5):325-2. doi: 10.1016/j.jiac.2018.01.018
  54. Rello J, Allam C, Ruiz-Spinelli A, Jarraud S. Severe Legionnaires' disease. Ann Intensive Care. 2024;14(1):51. doi: 10.1186/s13613-024-01252-y
  55. Авдеев С.Н., Белобородов В.Б., Белоцерковский Б.З., и др. Тяжелая внебольничная пневмония у взрослых. Клинические рекомендации Федерации анестезиологов и реаниматологов России. Анестезиология и реаниматология. 2022;(1):6-35 [Avdeev SN, Beloborodov VB, Belotserkovskiy BZ, et al. Severe community-acquired pneumonia in adults. Clinical recommendations from Russian Federation of Anaesthesiologists and Reanimatologists. Russian Journal of Anesthesiology and Reanimatology. 2022;(1):6-35 (in Russian)]. doi: 10.17116/anaesthesiology20220116
  56. Maekawa M, Takahashi K, Takahata M, Minami S. In vitro combination effect of pazufloxacin with various antibiotics against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Jpn J Antibiot. 2002;55(4):440-5 (in Japanese).
  57. Yanagisawa C, Hanaki H, Oishi T, et al. Combination effect of pazufloxacin and anti-mrsa drugs against beta-lactam antibiotic induced vancomycin-resistant MRSA (BIVR). Jpn J Antibiot. 2005;58(1):11-6 (in Japanese).
  58. Kizawa K, Miyazaki M, Nagasawa M, et al. Attenuation of arbekacin-induced nephrotoxicity in rats by pazufloxacin mesilate. Jpn J Antibiot. 2003;56(1):44-54 (in Japanese).
  59. Shi Z, Zhang J, Tian L, et al. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules. 2023;28(4):1762. doi: 10.3390/molecules28041762
  60. Kanafani ZA, Sleiman A, Frem JA, et al. Molecular characterization and differential effects of levofloxacin and ciprofloxacin on the potential for developing quinolone resistance among clinical Pseudomonas aeruginosa isolates. Front Microbiol. 2023;14:1209224. doi: 10.3389/fmicb.2023.1209224
  61. Sakenova N, Cacace E, Orakov A, et al. Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics. Nat Microbiol. 2025;10(1):202-16. doi: 10.1038/s41564-024-01857-w
  62. Ефименко Т.А., Терехова Л.П., Ефременкова О.В. Современное состояние проблемы антибиотикорезистентности патогенных бактерий. Антибиотики и Химиотерапия. 2019;64(5-6):64-8 [Efimenko TA, Terekhova LP, Efremenkova OV. Current State the Problem of Antibiotic Resistance of Pathogens. Antibiot Khimioter = Antibiotics and Chemotherapy. 2019;64(5-6):64-8 (in Russian)]. doi: 10.24411/0235-2990-2019-100033
  63. Takahashi K, Muratani T, Akasaka S, et al. The efficacy of sequential therapy using pazufloxacin followed by oral fluoroquinolones for treatment of pyelonephritis. J Infect Chemother. 2013;19(3):456-64. doi: 10.1007/s10156-012-0505-5
  64. Tanaka M, Matsumoto T, Sakumoto M, et al. Reduced clinical efficacy of pazufloxacin against gonorrhea due to high prevalence of quinolone-resistant isolates with the GyrA mutation. The Pazufloxacin STD Group. Antimicrob Agents Chemother. 1998;42(3):579-82. doi: 10.1128/AAC.42.3.579
  65. Kumazawa J, Matsumoto T, Tsukamoto T, et al. A comparative study of pazufloxacin mesilate (T-3762) and ceftazidime (CAZ) in the treatment of complicated urinary tract infections. Nishinihon Journal of Urology. 2000;62(8):472-500.
  66. Nomura T, Hirai K, Yamasaki M, et al. Efficacy of prophylactic single-dose therapy using fluoroquinolone for prostate brachytherapy. Jpn J Radiol. 2012;30(4):317-22. doi: 10.1007/s11604-012-0053-z
  67. Higa F, Shinzato T, Toyama M, et al. Efficacy of pazufloxacin mesilate in Legionnaires' disease: a case report and in vitro study of the isolate. J Infect Chemother. 2005;11(3):164-8. doi: 10.1007/s10156-005-0381-3
  68. Kodama Y, Hori S, Tominaga S, et al. Evaluation of clinical effectiveness of Pazufloxacin Mesilate in acute exacerbation of chronic respiratory diseases. Nihon Kokyuki Gakkai Zasshi. 2008;46(10):781-7 (in Japanese).
  69. Hamada Y, Imaizumi H, Kobayashi M, et al. Liver abscess that responded well to pazufloxacin therapy. J Infect Chemother. 2006;12(1):42-6. doi: 10.1007/s10156-005-0423-x
  70. Молчан Н.В., Смирнова Ю.А., Вельц Н.Ю., и др. Фторхинолоновые антибиотики: безопасность применения на примере ципрофлоксацина. Безопасность и риск фармакотерапии. 2019;7(2):72-83 [Molchan NV, Smirnova YA, Velts NY, et al. Fluoroquinolone antibiotics: safety of use by the example of ciprofloxacin. Safety and Risk of Pharmacotherapy. 2019;7(2):72-83 (in Russian)]. doi: 10.30895/2312-7821-2019-7-2-72-83
  71. Rusu A, Munteanu AC, Arbănași EM, Uivarosi V. Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics. 2023;15(3):804. doi: 10.3390/pharmaceutics15030804
  72. Baik S, Lau J, Huser V, McDonald CJ. Association between tendon ruptures and use of fluoroquinolone, and other oral antibiotics: a 10-year retrospective study of 1 million US senior Medicare beneficiaries. BMJ Open. 2020;10(12):e034844. doi: 10.1136/bmjopen-2019-034844
  73. Shu Y, Zhang Q, He X, et al. Fluoroquinolone-associated suspected tendonitis and tendon rupture: A pharmacovigilance analysis from 2016 to 2021 based on the FAERS database. Front Pharmacol. 2022;13:990241. doi: 10.3389/fphar.2022.990241
  74. Sommet A, Bénévent J, Rousseau V, et al. What Fluoroquinolones Have the Highest Risk of Aortic Aneurysm? A Case/Non-case Study in VigiBase®. J Gen Intern Med. 2019;34(4):502-3. doi: 10.1007/s11606-018-4774-2
  75. Schmuck G, Schürmann A, Schlüter G. Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an in vitro model. Antimicrob Agents Chemother. 1998;42(7):1831-6. doi: 10.1128/AAC.42.7.1831
  76. Anwar AI, Lu L, Plaisance CJ, et al. Fluoroquinolones: Neurological Complications and Side Effects in Clinical Practice. Cureus. 2024;16(2):e54565. doi: 10.7759/cureus.54565
  77. Fukuda H, Kawamura Y. Drug interactions between nonsteroidal anti-inflammatory drug and pazufloxacin mesilate, a new quinolone antibacterial agent for intravenous use: convulsions in mice after intravenous or intracerebroventricular administration. Jpn J Antibiot. 2002;55(3):270-80 (in Japanese).
  78. Rawla P, El Helou ML, Vellipuram AR. Fluoroquinolones and the Risk of Aortic Aneurysm or Aortic Dissection: A Systematic Review and Meta-Analysis. Cardiovasc Hematol Agents Med Chem. 2019;17(1):3-10. doi: 10.2174/1871525717666190402121958
  79. Gorelik E, Masarwa R, Perlman A, et al. Fluoroquinolones and Cardiovascular Risk: A Systematic Review, Meta-analysis and Network Meta-analysis. Drug Saf. 2019;42(4):529-38. doi: 10.1007/s40264-018-0751-2
  80. Wu Y, Bi WT, Qu LP, et al. Administration of macrolide antibiotics increases cardiovascular risk. Front Cardiovasc Med. 2023;10:1117254. doi: 10.3389/fcvm.2023.1117254
  81. Fukuda H, Morita Y, Shiotani N, et al. Effect of pazufloxacin mesilate, a new quinolone antibacterial agent, for intravenous use on QT interval. Jpn J Antibiot. 2004;57(4):404-12 (in Japanese).
  82. Будневский А.В., Малыш Е.Ю. Хроническая обструктивная болезнь легких как фактор риска развития сердечно-сосудистых заболеваний. Кардиоваскулярная терапия и профилактика. 2016;15(3):69-73 [Budnevsky AV, Malysh EYu. Chronic obstructive lung disease as risk factor for cardiovascular disorders. Cardiovascular Therapy and Prevention. 2016;15(3):69-73 (in Russian)]. doi: 10.15829/1728-8800-2016-3-69-73
  83. Blagova OV, Varionchik NV, Zaidenov VA, et al. Previous and First Detected Cardiovascular Diseases in Patients with New Coronavirus Pneumonia: Possible Mechanisms and Place in a Unified Prognostic Model. Int Arch Allergy Immunol. 2021;182(8):765-74. doi: 10.1159/000515253
  84. Cowan LT, Buck B, Schwind JS, et al. Triggering of cardiovascular disease by infection type: The Atherosclerosis Risk in Communities study (ARIC). Int J Cardiol. 2021;325:155-60. doi: 10.1016/j.ijcard.2020.09.073
  85. Liao SH, Hu SY, How CK, et al. Risk for hypoglycemic emergency with levofloxacin use, a population-based propensity score matched nested case-control study. PLoS One. 2022;17(4):e0266471. doi: 10.1371/journal.pone.0266471
  86. Guo IJ, Maximos M, Gamble J. Examining hypoglycemia risk with systemic fluoroquinolone use: A systematic review and meta-analysis. CMI Communications. 2024;1(2):105038. doi: 10.1016/j.cmicom.2024.105038
  87. Althaqafi A, Ali M, Alzahrani Y, et al. How Safe are Fluoroquinolones for Diabetic Patients? A Systematic Review of Dysglycemic and Neuropathic Effects of Fluoroquinolones. Ther Clin Risk Manag. 2021;17:1083-100. doi: 10.2147/TCRM.S284171
  88. Asai Y, Yamamoto T, Abe Y. Evaluation of the Expression Profile of Antibiotic-Induced Thrombocytopenia Using the Japanese Adverse Drug Event Report Database. Int J Toxicol. 2021;40(6):542-50. doi: 10.1177/10915818211048151
  89. Shimoda K. Mechanisms of quinolone phototoxicity. Toxicol Lett. 1998;102-103:369-73. doi: 10.1016/s0378-4274(98)00234-3
  90. Monteiro AF, Rato M, Martins C. Drug-induced photosensitivity: Photoallergic and phototoxic reactions. Clin Dermatol. 2016;34(5):571-81. doi: 10.1016/j.clindermatol.2016.05.006
  91. Kowalska J, Rok J, Rzepka Z, Wrześniok D. Drug-Induced Photosensitivity-From Light and Chemistry to Biological Reactions and Clinical Symptoms. Pharmaceuticals (Basel). 2021;14(8):723. doi: 10.3390/ph14080723
  92. Nagasawa M, Nakamura S, Miyazaki M, et al. Phototoxicity studies of pazufloxacin mesilate, a novel parenteral quinolone antimicrobial agent in vitro and in vivo studies. Jpn J Antibiot. 2002;55(3):259-69 (in Japanese).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Stages of modification of quinolone structures underlying the development of pazufloxacin.

Download (142KB)
3. Fig. 2. The structure of quinolones and FQ depending on the generation.

Download (217KB)
4. Fig. 3. OR values for arrhythmias and cardiovascular death in patients receiving FQ.

Download (188KB)

Copyright (c) 2025 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».