Current prospects of fluoroquinolones: pazufloxacin. A review
- Authors: Butranova O.I.1, Zyryanov S.K.1,2, Melnikova A.R.1, Matsepuro A.E.1
-
Affiliations:
- Peoples' Friendship University of Russia named after Patrice Lumumba
- City Clinical Hospital No. 24
- Issue: Vol 97, No 6 (2025): Issues of nephrology
- Pages: 509-521
- Section: Reviews
- URL: https://journal-vniispk.ru/0040-3660/article/view/313993
- DOI: https://doi.org/10.26442/00403660.2025.06.203268
- ID: 313993
Cite item
Full Text
Abstract
Fluoroquinolones (FQ) are one of the most valuable groups of antibacterial drugs in clinical practice. Ciprofloxacin and levofloxacin are drugs with the largest contribution to the structure of FQ consumption both in the Russian Federation and in the world. The widespread use of FQ in recent years has been accompanied by an intensive growth of antibiotic resistance of the main pathogens, including those from the ESKAPE group, which limits the possibilities of effective antibiotic therapy for a wide range of infectious diseases. In this situation, we have an attractive possibility of including a new FQ for the Russian pharmaceutical market, pazufloxacin, in the treatment regimens for patients with infectious diseases. This is a third-generation FQ, whose spectrum of antibacterial action, as has been demonstrated in the published studies, is close to that of the beta-lactam ABP ceftazidime. The studies considered in our narrative review indicate a high level of clinical efficacy and safety of this FQ, which suggests broad prospects for its use in the treatment of infectious diseases taking in account accelerated antibiotic resistance.
Full Text
##article.viewOnOriginalSite##About the authors
Olga I. Butranova
Peoples' Friendship University of Russia named after Patrice Lumumba
Author for correspondence.
Email: butranova-oi@rudn.ru
ORCID iD: 0000-0001-7729-2169
канд. мед. наук, доц. каф. общей и клинической фармакологии Медицинского института
Russian Federation, MoscowSergey K. Zyryanov
Peoples' Friendship University of Russia named after Patrice Lumumba; City Clinical Hospital No. 24
Email: butranova-oi@rudn.ru
ORCID iD: 0000-0002-6348-6867
д-р мед. наук, проф., зав. каф. общей и клинической фармакологии ФГАОУ ВО РУДН, зам. глав. врача ГБУЗ ГКБ №24
Russian Federation, Moscow; MoscowAnna R. Melnikova
Peoples' Friendship University of Russia named after Patrice Lumumba
Email: butranova-oi@rudn.ru
ORCID iD: 0009-0002-1474-5014
студентка Медицинского института
Russian Federation, MoscowAnastasia E. Matsepuro
Peoples' Friendship University of Russia named after Patrice Lumumba
Email: butranova-oi@rudn.ru
ORCID iD: 0009-0000-1961-609X
студентка Медицинского института
Russian Federation, MoscowReferences
- Bala A, Uhlin BE, Karah N. Insights into the genetic contexts of sulfonamide resistance among early clinical isolates of Acinetobacter baumannii. Infect Genet Evol. 2023;112:105444. doi: 10.1016/j.meegid.2023.105444
- Rammelkamp CH, Maxon T. Resistance of Staphylococcus aureus to the Action of Penicillin. Experimental Biology and Medicine. 2013;51(3):386-8. doi: 10.3181/00379727-51-13986
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2021 (GBD 2021) Cause-Specific Mortality 1990–2021. Seattle, United States of America: Institute for Health Metrics and Evaluation (IHME), 2024. doi: 10.6069/4fgf-3t54
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404(10459):1199-226. doi: 10.1016/S0140-6736(24)01867-1
- Янушевич О.О., Маев И.В., Крихели Н.И., и др. Исследование резистома микробных сообществ человека с помощью таргетной панели генов антибиотикорезистентности у пациентов с COVID-19. Терапевтический архив. 2024;95(12):1103-11 [Yanushevich OO. Study of the resistome of human microbial communities using a targeted panel of antibiotic resistance genes in COVID-19 patients. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;95(12):1103-11 (in Russian)]. doi: 10.26442/00403660.2023.12.202490
- Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol. 2024;22(10):598-616. doi: 10.1038/s41579-024-01054-w
- Куприянова Е.А., Абдулхаков С.Р., Исмагилова Р.К., и др. Распространенность мутаций, определяющих формирование резистентности Helicobacter pylori к антибактериальным препаратам, в городе Казани. Терапевтический архив. 2024;96(8):739-43 [Kupriyanova EA, Abdulkhakov SR, Ismagilova RK, et al. The prevalence of mutations underlying development of Helicobacter pylori resistance to antibiotics in Kazan. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(8):739-43 (in Russian)]. doi: 10.26442/00403660.2024.08.202813
- Гомон Ю.М., Колбин А.С., Арепьева М.А., и др. Потребление антимикробных препаратов в РФ в 2008–2022 гг.: фармакоэпидемиологическое исследование. Клиническая микробиология и антимикробная химиотерапия. 2023;25(4):395-400 [Gomon YuM, Kolbin AS, Arepyeva MA, et al. Antimicrobial drug consumption in the Russian Federation (2008–2022): pharmacoepidemiological study. Clinical Microbiology and Antimicrobial Chemotherapy. 2023;25(4):395-400 (in Russian)]. doi: 10.36488/cmac.2023.4.395-400
- Adriaenssens N, Bruyndonckx R, Versporten A, et al. Consumption of quinolones in the community, European Union/European Economic Area, 1997–2017. J Antimicrob Chemother. 2021;76(12 Suppl. 2):ii37-i4. doi: 10.1093/jac/dkab176
- Захаренков И.А., Рачина С.А., Козлов Р.С., Белькова Ю.А. Потребление системных антибиотиков в России в 2017–2021 гг.: основные тенденции. Клиническая микробиология и антимикробная химиотерапия. 2022;24(3):220-5 [Zakharenkov IA, Rachina SA, Kozlov RS, Belkova YuA. Consumption of systemic antibiotics in the Russian Federation in 2017–2021. Clinical Microbiology and Antimicrobial Chemotherapy. 2022;24(3):220-5 (in Russian)]. doi: 10.36488/cmac.2022.3.220-225
- Lo CL, Lee CC, Li CW, et al. Fluoroquinolone therapy for bloodstream infections caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. J Microbiol Immunol Infect. 2017;50(3):355-61. doi: 10.1016/j.jmii.2015.08.012
- Meije Y, Pigrau C, Fernández-Hidalgo N, et al. Non-intravenous carbapenem-sparing antibiotics for definitive treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase: A propensity score study. Int J Antimicrob Agents. 2019;54(2):189-96. doi: 10.1016/j.ijantimicag.2019.05.004
- Склеенова Е.Ю., Азизов И.С., Шек Е.А., и др. Pseudomonas aeruginosa в РФ: история одного из наиболее успешных нозокомиальных патогенов. Клиническая Микробиология и Антимикробная Химиотерапия. 2018;20(3):164-71 [Skleenova EYu, Azyzov IS, Shek EA, et al. Pseudomonas aeruginosa: the history of one of the most successful nosocomial pathogens in Russian hospitals. Clinical Microbiology and Antimicrobial Chemotherapy. 2018;20(3):164-71 (in Russian)]. doi: 10.36488/cmac.2018.3.164-171
- Белобородов В.Б., Голощапов О.В., Гусаров В.Г., и др. Диагностика и антимикробная терапия инфекций, вызванных полирезистентными микроорганизмами (обновление 2024 года). Вестник анестезиологии и реаниматологии. 2025;22(2):149-89 [Beloborodov VB, Goloschapov OV, Gusarov VG, et al. Guidelines of the Association of Anesthesiologists-Intensivists, the Interregional Non-Governmental Organization Alliance of Clinical Chemotherapists and Microbiologists, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), and NGO Russian Sepsis Forum "Diagnostics and antimicrobial therapy of the infections caused by multiresistant microorganisms" (update 2024). Messenger of Anesthesiology and Resuscitation. 2025;22(2):149-89 (in Russian)]. doi: 10.21292/2078-5658-2022-19-2-84-114
- Mareș C, Petca RC, Popescu RI, et al. Update on Urinary Tract Infection Antibiotic Resistance-A Retrospective Study in Females in Conjunction with Clinical Data. Life (Basel). 2024;14(1):106. doi: 10.3390/life14010106
- Hirai S, Tanaka K, Makino S, Narita H. Adverse drug interactions between pyridonecarboxylic acids and nonsteroidal antiinflammatory drugs: convulsion after oral or intracerebral administration in mice. Yakugaku Zasshi. 1989;109(2):119-26 (in Japanese). doi: 10.1248/yakushi1947.109.2_119
- Minami S, Hattori R, Matsuda A. Pharmacological properties and expected clinical role of an injectable new quinolone antibiotic, pazufloxacin mesilate. Nihon Yakurigaku Zasshi. 2003;122(2):161-78 (in Japanese). doi: 10.1254/fpj.122.161
- Nakamura K, Ikawa K, Nishikawa G, et al. Clinical pharmacokinetics and pharmacodynamic target attainment of pazufloxacin in prostate tissue: Dosing considerations for prostatitis. J Infect Chemother. 2017;23(12):809-13. doi: 10.1016/j.jiac.2017.08.005
- Cao G, Zhu Y, Xie X, et al. Pharmacokinetics and pharmacodynamics of levofloxacin in bronchial mucosa and lung tissue of patients undergoing pulmonary operation. Exp Ther Med. 2020;20(1):607-16. doi: 10.3892/etm.2020.8715
- Van't Boveneind-Vrubleuskaya N, Seuruk T, van Hateren K, et al. Pharmacokinetics of Levofloxacin in Multidrug and Extensively Drug-Resistant Tuberculosis Patients. Antimicrob Agents Chemother. 2017;61(8):e00343-17. doi: 10.1128/AAC.00343-17
- Stass H, Dalhoff A, Kubitza D, Schühly U. Pharmacokinetics, safety, and tolerability of ascending single doses of moxifloxacin, a new 8-methoxy quinolone, administered to healthy subjects. Antimicrob Agents Chemother. 1998;42(8):2060-5. doi: 10.1128/AAC.42.8.2060
- Yamaki K, Hasegawa T, Matsuda I, et al. Pharmacokinetic Characteristics of a New Fluoroquinolone, Pazufloxacin, in Elderly Patients. Journal of Infection and Chemotherapy. 2006;3(2):97-102. doi: 10.1007/bf02490182
- Tanaka A, Takada T, Kawarada Y, et al. Antimicrobial therapy for acute cholangitis: Tokyo Guidelines. J Hepatobiliary Pancreat Surg. 2007;14(1):59-67. doi: 10.1007/s00534-006-1157-6
- Kohno S, Aoki N, Kawai S, et al. A clinical phase III study of pazufloxacin in patients with bacterial pneumonia. Japanese Journal of Chemotherapy. 2010;58:664-80.
- Araki H, Ogake N, Tsuneda R, et al. Muscle distribution of antimicrobial agents after a single intravenous administration to rats. Drug Metab Pharmacokinet. 2002;17(3):237-44. doi: 10.2133/dmpk.17.237
- Phapale PB, Lee HW, Kim S, et al. Analysis of Pazufloxacin Mesilate in Human Plasma and Urine by LC with Fluorescence and UV Detection, and Its Application to Pharmacokinetic Study. Chroma. 2009;71(1-2):101-10. doi: 10.1365/s10337-009-1408-1
- DrugBank Online. Nalidixic acid. Available at: https://go.drugbank.com/drugs/DB00779. Accessed: 01.12.2024.
- Fabre D, Bressolle F, Gomeni R, et al. Steady-state pharmacokinetics of ciprofloxacin in plasma from patients with nosocomial pneumonia: penetration of the bronchial mucosa. Antimicrob Agents Chemother. 1991;35(12):2521-5. doi: 10.1128/AAC.35.12.2521
- DrugBank Online. Levofloxacin. Available at: https://go.drugbank.com/drugs/DB01137. Accessed: 01.12.2024.
- Brouwers JR. Drug interactions with quinolone antibacterials. Drug Saf. 1992;7(4):268-81. doi: 10.2165/00002018-199207040-00003
- Niki Y, Watanabe S, Yoshida K, et al. Effect of pazufloxacin mesilate on the serum concentration of theophylline. J Infect Chemother. 2002;8(1):33-6. doi: 10.1007/s101560200003
- Lou S, Li W, Hu Q. Influence of cefoperazone and azithromycin on the pharmacokinetics of pazufloxacin in rats. Eur J Drug Metab Pharmacokinet. 2007;32(4):219-23. doi: 10.1007/BF03191007
- Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules. 2020;25(23):5662. doi: 10.3390/molecules25235662
- Millanao AR, Mora AY, Villagra NA, et al. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules. 2021;26(23):7153. doi: 10.3390/molecules26237153
- Zhanel GG, Walkty A, Vercaigne L, et al. The new fluoroquinolones: A critical review. Can J Infect Dis. 1999;10(3):207-38. doi: 10.1155/1999/378394
- Takei M, Fukuda H, Kishii R, Hosaka M. Target preference of 15 quinolones against Staphylococcus aureus, based on antibacterial activities and target inhibition. Antimicrob Agents Chemother. 2001;45(12):3544-7. doi: 10.1128/AAC.45.12.3544-3547.2001
- Umezaki Y, Matsumoto K, Ikawa K, et al. Concentration-Dependent Activity of Pazufloxacin against Pseudomonas aeruginosa: An In Vivo Pharmacokinetic/Pharmacodynamic Study. Antibiotics (Basel). 2022;11(7):982. doi: 10.3390/antibiotics11070982
- Schentag JJ, Meagher AK, Forrest A. Fluoroquinolone AUIC break points and the link to bacterial killing rates. Part 2: human trials. Ann Pharmacother. 2003;37(10):1478-88. doi: 10.1345/aph.1C419
- Wang XG, Miao J, Liang DR, et al. Clinical pharmacokinetics/pharmacodynamics study on pazufloxacin methanesulphonate injection. Sichuan Da Xue Xue Bao Yi Xue Ban. 2009;40(4):689-93 (in Chinese).
- Sabo A, Tomas A, Tomić N, et al. Pharmacokinetic/pharmacodynamic based dosing of ciprofloxacin in complicated urinary tract infections. Bangladesh J Pharmacol. 2015;10(3):621. doi: 10.3329/bjp.v10i3.23604
- Murillo O, Pachón ME, Euba G, et al. High doses of levofloxacin vs moxifloxacin against staphylococcal experimental foreign-body infection: the effect of higher MIC-related pharmacokinetic parameters on efficacy. J Infect. 2009;58(3):220-6. doi: 10.1016/j.jinf.2009.01.005
- Van TT, Minejima E, Chiu CA, Butler-Wu SM. Don't Get Wound Up: Revised Fluoroquinolone Breakpoints for Enterobacteriaceae and Pseudomonas aeruginosa. J Clin Microbiol. 2019;57(7):e02072-18. doi: 10.1128/JCM.02072-18
- Li WR, Zhang ZQ, Liao K, et al. Pseudomonas aeruginosa heteroresistance to levofloxacin caused by upregulated expression of essential genes for DNA replication and repair. Front Microbiol. 2022;13:1105921. doi: 10.3389/fmicb.2022.1105921
- Malik M, Marks KR, Schwanz HA, et al. Effect of N-1/c-8 ring fusion and C-7 ring structure on fluoroquinolone lethality. Antimicrob Agents Chemother. 2010;54(12):5214-21. doi: 10.1128/AAC.01054-10
- Niu H, Yee R, Cui P, et al. Identification and Ranking of Clinical Compounds with Activity Against Log-phase Growing Uropathogenic Escherichia coli. Curr Drug Discov Technol. 2020;17(2):191-9. doi: 10.2174/1570163815666180808115501
- Sagara H, Yoshikawa K, Tomizawa I, et al. Basic and clinical studies of pazufloxacin on infectious enteritis research group of T-3761 on infectious enteritis. Kansenshogaku Zasshi. 1996;70(1):60-72 (in Japanese). doi: 10.11150/kansenshogakuzasshi1970.70.60
- Fukuyama M, Oonaka K, Hara M, Imagawa Y. In vitro antibacterial activity of pazufloxacin (PZFX) against clinical isolates from infectious enteritis. Kansenshogaku Zasshi. 1996;70(1):51-9 (in Japanese). doi: 10.11150/kansenshogakuzasshi1970.70.51
- Uegami S, Ikawa K, Ohge H, et al. Pharmacokinetics and pharmacodynamic target attainment of intravenous pazufloxacin in the bile of patients undergoing biliary pancreatic surgery. J Chemother. 2014;26(5):287-92. doi: 10.1179/1973947814Y.0000000167
- Mikamo H, Sato Y, Hayasaki Y, et al. In vitro activities of pazufloxacin, a novel injectable quinolone, against bacteria causing infections in obstetric and gynecological patients. Chemotherapy. 1999;45(3):154-7. doi: 10.1159/000007177
- Burgess DS, Hall RG 2nd. Simulated comparison of the pharmacodynamics of ciprofloxacin and levofloxacin against Pseudomonas aeruginosa using pharmacokinetic data from healthy volunteers and 2002 minimum inhibitory concentration data. Clin Ther. 2007;29(7):1421-7. doi: 10.1016/j.clinthera.2007.07.024
- Sun C, Hao J, Dou M, Gong Y. Mutant prevention concentrations of levofloxacin, pazufloxacin and ciprofloxacin for A. baumannii and mutations in gyrA and parC genes. J Antibiot (Tokyo). 2015;68(5):313-7. doi: 10.1038/ja.2014.150
- Higa F, Akamine M, Haranaga S, et al. In vitro activity of pazufloxacin, tosufloxacin and other quinolones against Legionella species. J Antimicrob Chemother. 2005;56(6):1053-7. doi: 10.1093/jac/dki391
- Miyashita N, Kobayashi I, Higa F, et al. In vitro activity of various antibiotics against clinical strains of Legionella species isolated in Japan. J Infect Chemother. 2018;24(5):325-2. doi: 10.1016/j.jiac.2018.01.018
- Rello J, Allam C, Ruiz-Spinelli A, Jarraud S. Severe Legionnaires' disease. Ann Intensive Care. 2024;14(1):51. doi: 10.1186/s13613-024-01252-y
- Авдеев С.Н., Белобородов В.Б., Белоцерковский Б.З., и др. Тяжелая внебольничная пневмония у взрослых. Клинические рекомендации Федерации анестезиологов и реаниматологов России. Анестезиология и реаниматология. 2022;(1):6-35 [Avdeev SN, Beloborodov VB, Belotserkovskiy BZ, et al. Severe community-acquired pneumonia in adults. Clinical recommendations from Russian Federation of Anaesthesiologists and Reanimatologists. Russian Journal of Anesthesiology and Reanimatology. 2022;(1):6-35 (in Russian)]. doi: 10.17116/anaesthesiology20220116
- Maekawa M, Takahashi K, Takahata M, Minami S. In vitro combination effect of pazufloxacin with various antibiotics against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Jpn J Antibiot. 2002;55(4):440-5 (in Japanese).
- Yanagisawa C, Hanaki H, Oishi T, et al. Combination effect of pazufloxacin and anti-mrsa drugs against beta-lactam antibiotic induced vancomycin-resistant MRSA (BIVR). Jpn J Antibiot. 2005;58(1):11-6 (in Japanese).
- Kizawa K, Miyazaki M, Nagasawa M, et al. Attenuation of arbekacin-induced nephrotoxicity in rats by pazufloxacin mesilate. Jpn J Antibiot. 2003;56(1):44-54 (in Japanese).
- Shi Z, Zhang J, Tian L, et al. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules. 2023;28(4):1762. doi: 10.3390/molecules28041762
- Kanafani ZA, Sleiman A, Frem JA, et al. Molecular characterization and differential effects of levofloxacin and ciprofloxacin on the potential for developing quinolone resistance among clinical Pseudomonas aeruginosa isolates. Front Microbiol. 2023;14:1209224. doi: 10.3389/fmicb.2023.1209224
- Sakenova N, Cacace E, Orakov A, et al. Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics. Nat Microbiol. 2025;10(1):202-16. doi: 10.1038/s41564-024-01857-w
- Ефименко Т.А., Терехова Л.П., Ефременкова О.В. Современное состояние проблемы антибиотикорезистентности патогенных бактерий. Антибиотики и Химиотерапия. 2019;64(5-6):64-8 [Efimenko TA, Terekhova LP, Efremenkova OV. Current State the Problem of Antibiotic Resistance of Pathogens. Antibiot Khimioter = Antibiotics and Chemotherapy. 2019;64(5-6):64-8 (in Russian)]. doi: 10.24411/0235-2990-2019-100033
- Takahashi K, Muratani T, Akasaka S, et al. The efficacy of sequential therapy using pazufloxacin followed by oral fluoroquinolones for treatment of pyelonephritis. J Infect Chemother. 2013;19(3):456-64. doi: 10.1007/s10156-012-0505-5
- Tanaka M, Matsumoto T, Sakumoto M, et al. Reduced clinical efficacy of pazufloxacin against gonorrhea due to high prevalence of quinolone-resistant isolates with the GyrA mutation. The Pazufloxacin STD Group. Antimicrob Agents Chemother. 1998;42(3):579-82. doi: 10.1128/AAC.42.3.579
- Kumazawa J, Matsumoto T, Tsukamoto T, et al. A comparative study of pazufloxacin mesilate (T-3762) and ceftazidime (CAZ) in the treatment of complicated urinary tract infections. Nishinihon Journal of Urology. 2000;62(8):472-500.
- Nomura T, Hirai K, Yamasaki M, et al. Efficacy of prophylactic single-dose therapy using fluoroquinolone for prostate brachytherapy. Jpn J Radiol. 2012;30(4):317-22. doi: 10.1007/s11604-012-0053-z
- Higa F, Shinzato T, Toyama M, et al. Efficacy of pazufloxacin mesilate in Legionnaires' disease: a case report and in vitro study of the isolate. J Infect Chemother. 2005;11(3):164-8. doi: 10.1007/s10156-005-0381-3
- Kodama Y, Hori S, Tominaga S, et al. Evaluation of clinical effectiveness of Pazufloxacin Mesilate in acute exacerbation of chronic respiratory diseases. Nihon Kokyuki Gakkai Zasshi. 2008;46(10):781-7 (in Japanese).
- Hamada Y, Imaizumi H, Kobayashi M, et al. Liver abscess that responded well to pazufloxacin therapy. J Infect Chemother. 2006;12(1):42-6. doi: 10.1007/s10156-005-0423-x
- Молчан Н.В., Смирнова Ю.А., Вельц Н.Ю., и др. Фторхинолоновые антибиотики: безопасность применения на примере ципрофлоксацина. Безопасность и риск фармакотерапии. 2019;7(2):72-83 [Molchan NV, Smirnova YA, Velts NY, et al. Fluoroquinolone antibiotics: safety of use by the example of ciprofloxacin. Safety and Risk of Pharmacotherapy. 2019;7(2):72-83 (in Russian)]. doi: 10.30895/2312-7821-2019-7-2-72-83
- Rusu A, Munteanu AC, Arbănași EM, Uivarosi V. Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics. 2023;15(3):804. doi: 10.3390/pharmaceutics15030804
- Baik S, Lau J, Huser V, McDonald CJ. Association between tendon ruptures and use of fluoroquinolone, and other oral antibiotics: a 10-year retrospective study of 1 million US senior Medicare beneficiaries. BMJ Open. 2020;10(12):e034844. doi: 10.1136/bmjopen-2019-034844
- Shu Y, Zhang Q, He X, et al. Fluoroquinolone-associated suspected tendonitis and tendon rupture: A pharmacovigilance analysis from 2016 to 2021 based on the FAERS database. Front Pharmacol. 2022;13:990241. doi: 10.3389/fphar.2022.990241
- Sommet A, Bénévent J, Rousseau V, et al. What Fluoroquinolones Have the Highest Risk of Aortic Aneurysm? A Case/Non-case Study in VigiBase®. J Gen Intern Med. 2019;34(4):502-3. doi: 10.1007/s11606-018-4774-2
- Schmuck G, Schürmann A, Schlüter G. Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an in vitro model. Antimicrob Agents Chemother. 1998;42(7):1831-6. doi: 10.1128/AAC.42.7.1831
- Anwar AI, Lu L, Plaisance CJ, et al. Fluoroquinolones: Neurological Complications and Side Effects in Clinical Practice. Cureus. 2024;16(2):e54565. doi: 10.7759/cureus.54565
- Fukuda H, Kawamura Y. Drug interactions between nonsteroidal anti-inflammatory drug and pazufloxacin mesilate, a new quinolone antibacterial agent for intravenous use: convulsions in mice after intravenous or intracerebroventricular administration. Jpn J Antibiot. 2002;55(3):270-80 (in Japanese).
- Rawla P, El Helou ML, Vellipuram AR. Fluoroquinolones and the Risk of Aortic Aneurysm or Aortic Dissection: A Systematic Review and Meta-Analysis. Cardiovasc Hematol Agents Med Chem. 2019;17(1):3-10. doi: 10.2174/1871525717666190402121958
- Gorelik E, Masarwa R, Perlman A, et al. Fluoroquinolones and Cardiovascular Risk: A Systematic Review, Meta-analysis and Network Meta-analysis. Drug Saf. 2019;42(4):529-38. doi: 10.1007/s40264-018-0751-2
- Wu Y, Bi WT, Qu LP, et al. Administration of macrolide antibiotics increases cardiovascular risk. Front Cardiovasc Med. 2023;10:1117254. doi: 10.3389/fcvm.2023.1117254
- Fukuda H, Morita Y, Shiotani N, et al. Effect of pazufloxacin mesilate, a new quinolone antibacterial agent, for intravenous use on QT interval. Jpn J Antibiot. 2004;57(4):404-12 (in Japanese).
- Будневский А.В., Малыш Е.Ю. Хроническая обструктивная болезнь легких как фактор риска развития сердечно-сосудистых заболеваний. Кардиоваскулярная терапия и профилактика. 2016;15(3):69-73 [Budnevsky AV, Malysh EYu. Chronic obstructive lung disease as risk factor for cardiovascular disorders. Cardiovascular Therapy and Prevention. 2016;15(3):69-73 (in Russian)]. doi: 10.15829/1728-8800-2016-3-69-73
- Blagova OV, Varionchik NV, Zaidenov VA, et al. Previous and First Detected Cardiovascular Diseases in Patients with New Coronavirus Pneumonia: Possible Mechanisms and Place in a Unified Prognostic Model. Int Arch Allergy Immunol. 2021;182(8):765-74. doi: 10.1159/000515253
- Cowan LT, Buck B, Schwind JS, et al. Triggering of cardiovascular disease by infection type: The Atherosclerosis Risk in Communities study (ARIC). Int J Cardiol. 2021;325:155-60. doi: 10.1016/j.ijcard.2020.09.073
- Liao SH, Hu SY, How CK, et al. Risk for hypoglycemic emergency with levofloxacin use, a population-based propensity score matched nested case-control study. PLoS One. 2022;17(4):e0266471. doi: 10.1371/journal.pone.0266471
- Guo IJ, Maximos M, Gamble J. Examining hypoglycemia risk with systemic fluoroquinolone use: A systematic review and meta-analysis. CMI Communications. 2024;1(2):105038. doi: 10.1016/j.cmicom.2024.105038
- Althaqafi A, Ali M, Alzahrani Y, et al. How Safe are Fluoroquinolones for Diabetic Patients? A Systematic Review of Dysglycemic and Neuropathic Effects of Fluoroquinolones. Ther Clin Risk Manag. 2021;17:1083-100. doi: 10.2147/TCRM.S284171
- Asai Y, Yamamoto T, Abe Y. Evaluation of the Expression Profile of Antibiotic-Induced Thrombocytopenia Using the Japanese Adverse Drug Event Report Database. Int J Toxicol. 2021;40(6):542-50. doi: 10.1177/10915818211048151
- Shimoda K. Mechanisms of quinolone phototoxicity. Toxicol Lett. 1998;102-103:369-73. doi: 10.1016/s0378-4274(98)00234-3
- Monteiro AF, Rato M, Martins C. Drug-induced photosensitivity: Photoallergic and phototoxic reactions. Clin Dermatol. 2016;34(5):571-81. doi: 10.1016/j.clindermatol.2016.05.006
- Kowalska J, Rok J, Rzepka Z, Wrześniok D. Drug-Induced Photosensitivity-From Light and Chemistry to Biological Reactions and Clinical Symptoms. Pharmaceuticals (Basel). 2021;14(8):723. doi: 10.3390/ph14080723
- Nagasawa M, Nakamura S, Miyazaki M, et al. Phototoxicity studies of pazufloxacin mesilate, a novel parenteral quinolone antimicrobial agent in vitro and in vivo studies. Jpn J Antibiot. 2002;55(3):259-69 (in Japanese).
Supplementary files
