Structural and functional parameters of erythrocytes as predictors of unfavorable outcome in patients with colorectal cancer

Cover Page

Cite item

Full Text

Abstract

Aim. Identification the characteristics of fatty acids (FAs) in erythrocyte membranes and in blood serum, as well as the electrical and viscoelastic parameters of erythrocytes to assess their ability to be predictors of an unfavorable outcome in patients with colorectal cancer (CRC).

Materials and methods. 112 people with an average age of 63.1 ± 9.5 years (62 men, 50 women) with CRC of stages I–IV were examined. The patients were divided into 2 groups depending on the outcome of the disease after 6 years of follow-up: group 1 – with stabilization of the disease (n = 55), group 2 (n = 57) – with an unfavorable outcome. The FA composition of erythrocyte membranes and blood serum was studied using gas chromatography/mass spectrometry, a system based on three Agilent 7000B quadrupoles (USA). The electrical and viscoelastic parameters of erythrocytes were studied using the method of dielectrophoresis.

Results. An unfavorable outcome in patients with CRC is associated with elevated levels of docosapentaenoic acid (C22:5n-3) (p = 0.0003), docosahexaenoic acid (C22:6n-3) (p = 0.001), docosathetraenoic acid (C22:4n-6) (p = 0.004), and total omega-3 polyunsaturated fatty acids (PUFA) (p = 0.0004) in erythrocyte membranes, eicosadienoic acid (C20:2 n-6) in erythrocyte membranes (p = 0.03) and blood serum (p = 0.01), and, conversely, reduced levels of ratios saturated fatty acids (SFA)/PUFA (p = 0.004), SFA / unsaturated fatty acids (USFA) (p = 0.01) and concentrations of myristic FA (C14:0) (p = 0.03) in erythrocyte membranes, as well as with a number of changes in electrical, viscoelastic parameters of red blood cells: with increased hemolysis of red blood cells at high frequencies (106 Hz – p = 0.0006 and 5 × 105 Hz – p = 0.046), increased aggregation indices at low frequencies (105 Hz – p = 0.04 and 5 × 104 Hz – p = 0.047), as well as a shift in the crossover frequency to the high frequency range (p = 0.036). In patients with stages 1–2 of CRC, omega-6 PUFAs, eicosadienoic acid C20:2n-6 (p = 0.006), docosatetraenoic acid C22:4n-6 (p = 0.012), were of the greatest importance for differentiating disease outcomes, while total content omega-3 PUFAs in erythrocyte membranes (p = 0.0129), docosahexaenoic acid C22:6 n-3 (p = 0.0169), total content (C20:5n-3+C22:6n-3) in erythrocyte membranes (p = 0.0198), docosapentaenoic acid C22:5 n-3 (p = 0.022) were slightly less important. As in the general group of patients with CRC, the degree of hemolysis at a frequency of 106 Hz was a predictor of an unfavorable outcome in people with early stages of the oncological process. ROC analysis revealed a high potential of palmitic acid in erythrocyte membranes to predict an unfavorable CRC outcome (AUC 0.786, 95% confidence interval 0.638–0.901, sensitivity 84.4%, specificity 68.2%). The diagnostic model, which included five parameters – erythrocyte levels C16:0, ratio SFA/PUFA, total USFA, total PUFA, and serum levels C20:2n-6, had an AUC of 0.663 (95% confidence interval 0.483–0.801) with the highest sensitivity of 85.2%, but not high specificity of 60.1% for predicting an unfavorable outcome in CRC.

Conclusion. Fatty acids of erythrocyte membranes, blood serum, electrical, and viscoelastic parameters of erythrocytes should be considered as promising biomarker predictors in patients with CRC that require further study.

About the authors

Margarita V. Kruchinina

Research Institute of Internal and Preventive Medicine; Novosibirsk State Medical University

Author for correspondence.
Email: kruchmargo@yandex.ru
ORCID iD: 0000-0003-0077-3823

д-р мед. наук, проф., зав. лаб. гастроэнтерологии, вед. науч. сот. лаб. гастроэнтерологии; проф. каф. пропедевтики внутренних болезней

Russian Federation, Novosibirsk; Novosibirsk

Marina F. Osipenko

Novosibirsk State Medical University

Email: kruchmargo@yandex.ru
ORCID iD: 0000-0002-5156-2842

д-р мед. наук, проф., зав. каф. пропедевтики внутренних болезней

Russian Federation, Novosibirsk

Andrey A. Gromov

Research Institute of Internal and Preventive Medicine

Email: kruchmargo@yandex.ru
ORCID iD: 0000-0001-9254-4192

канд. мед. наук, ст. науч. сотр. лаб. клинических биохимических и гормональных исследований терапевтических заболеваний, руководитель Центра профилактики тромбозов

Russian Federation, Novosibirsk

Andrey V. Starikov

Novosibirsk Regional Oncology Dispensary

Email: kruchmargo@yandex.ru
ORCID iD: 0009-0009-6776-3401

врач-онколог

Russian Federation, Novosibirsk

References

  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. doi: 10.3322/caac.21834
  2. Van der Geest LG, Lam-Boer J, Koopman M, et al. Nationwide trends in incidence, treatment and survival of colorectal cancer patients with synchronous metastases. Clin Exp Metastasis. 2015;32(5):457-65. doi: 10.1007/s10585-015-9719-0
  3. White A, Joseph D, Rim SH, et al. Colon cancer survival in the United States by race and stage (2001-2009): Findings from the CONCORD-2 study. Cancer. 2017;123(Suppl. 24):5014-36. doi: 10.1002/cncr.31076
  4. Zhang Y, Wang Y, Zhang B, et al. Methods and biomarkers for early detection, prediction, and diagnosis of colorectal cancer. Biomed Pharmacother. 2023;163:114786. doi: 10.1016/j.biopha.2023.114786
  5. Gu J, Xiao Y, Shu D, et al. Metabolomics Analysis in Serum from Patients with Colorectal Polyp and Colorectal Cancer by 1H-NMR Spectrometry. Dis Markers. 2019;2019:3491852. doi: 10.1155/2019/3491852
  6. Martín-Blázquez A, Díaz C, González-Flores E, et al. Untargeted LC-HRMS-based metabolomics to identify novel biomarkers of metastatic colorectal cancer. Sci Rep. 2019;9(1):20198. doi: 10.1038/s41598-019-55952-8
  7. Santos CR, Schulze A. Lipid Metabolism in Cancer: Lipid Metabolism in Cancer. FEBS J. 2012;279(15):2610-23. doi: 10.1111/j.1742-4658.2012.08644.x
  8. Del Solar V, Lizardo DY, Li N, et al. Differential Regulation of Specific Sphingolipids in Colon Cancer Cells during Staurosporine-Induced Apoptosis. Chem Biol. 2015;22:1662-70. doi: 10.1016/j.chembiol.2015.11.004
  9. Sun H, Zhang L, Wang Z, et al. Single-cell transcriptome analysis indicates fatty acid metabolism-mediated metastasis and immunosuppression in male breast cancer. Nat Commun. 2023;14(1):5590. doi: 10.1038/s41467-023-41318-2
  10. El Hindi K, Brachtendorf S, Hartel JC, et al. Hypoxia induced deregulation of sphingolipids in colon cancer is a prognostic marker for patient outcome. Biochim Biophys Acta Mol Basis Dis. 2024;1870(1):166906. doi: 10.1016/j.bbadis.2023.166906
  11. Krishnan ST, Winkler D, Creek D, et al. Staging of colorectal cancer using lipid biomarkers and machine learning. Metabolomics. 2023;19(10):84. doi: 10.1007/s11306-023-02049-z
  12. Кручинина М.В., Светлова И.О., Громов А.А., и др. Колоректальный рак и изменения липидома. Новосибирск: ООО «Офсет-ТМ», 2020 [Kruchinina MV, Svetlova IO, Gromov AA, et al. Kolorektal'nyi rak i izmeneniia lipidoma. Novosibirsk: Offset-TM LLC, 2020 (in Russian)].
  13. Spell DW, Jones DV Jr, Harper WF, David Bessman J. The value of a complete blood count in predicting cancer of the colon. Cancer Detect Prev. 2004;28(1):37-42. doi: 10.1016/j.cdp.2003.10.002
  14. Ellingsen TS, Lappegard J, Skjelbakken T, et al. Impact of red cell distribution width on future risk of cancer and all-cause mortality among cancer patients – the Tromsø Study. Haematologica. 2015;100(10): e387-9. doi: 10.3324/haematol.2015.129601
  15. Santos-Silva MA, Sousa N, Majar M, et al. Pattern recognition of hematological profiles of tumors of the digestive tract: an exploratory study. Front Med (Lausanne). 2023;10:1208022. doi: 10.3389/fmed.2023.1208022
  16. Rees PA, Clouston HW, Duff S, Kirwan CC. Colorectal cancer and thrombosis. Int J Colorectal Dis. 2018;33(1):105-8. doi: 10.1007/s00384-017-2909-2
  17. Shen J, Qin X, Zeng X, et al. Hemoglobin levels in red blood cells and risk of colorectal cancer: A causal investigation based on Mendelian randomization. Medicine (Baltimore). 2024;103(48):e40562. doi: 10.1097/MD.0000000000040562
  18. Kruchinina MV, Prudnikova YaI, Gromov AA, et al. New opportunities for colorectal cancer diagnostics using an optical cell detection system based on dielectrophoresis. Optics and Spectroscopy. 2019;126(5): 568-73. doi: 10.1134/S0030400X19050163
  19. Kruchinina MV, Gromov A A, Shcherbakova LV, et al. Electric and viscoelastic parameters of erythrocytes in models for diagnostics of adenomatous polyps and stages of colorectal cancer in optical detection of cells in an inhomogeneous alternating electric field. Optics and Spectroscopy. 2021;129(6):772-85. doi: 10.1134/S0030400X21060060
  20. Скоулфилд Д.Г., Энг К. Колоректальный рак. Диагностика и тактика лечения. Пер. с анг. под ред. Ю.А. Шелыгина. М.: Практическая медицина, 2019 [Scoulfield DG, Eng K. Colorectal cancer. Diagnostika i taktika lecheniia. Trans. from English. Moscow: Practical Medicine, 2019 (in Russian)].
  21. Генералов К.В., Кручинина М.В., Сафатов А.С., и др. Диэлектрофорез в медицине. Новосибирск: ООО «Офсет-ТМ», 2024 [Generalov KV, Kruchinina MV, Safatov AS, et al. Dielektroforez v meditsine. Novosibirsk: Offset-TM LLC, 2020 (in Russian)].
  22. Кручинина М.В., Кручинин В.Н., Прудникова Я.И., и др. Исследование уровня жирных кислот мембран эритроцитов и сыворотки крови у пациентов с колоректальным раком г. Новосибирска. Успехи молекулярной онкологии. 2018;5(2):50-61 [Kruchinina MV, Kruchinin VN, Prudnikova YaI, et al. Study of the level of fatty acids in erythrocyte membranes and serum of patients with colorectal cancer in Novosibirsk. Advances in Molecular Oncology. 2018;5(2):50-61 (in Russian)]. doi: 10.17650/2313-805X-2018-5-2-50-61
  23. Breiman L. Random Forests. Machine Learning. 2001;45:5-32. doi: 10.1023/A:1010933404324
  24. Ecker J, Benedetti E, Kindt ASD, et al. The Colorectal Cancer Lipidome: Identification of a Robust Tumor-Specific Lipid Species Signature. Gastroenterology. 2021;161(3):910-23.e19. doi: 10.1053/j.gastro.2021.05.009
  25. Machala M, Procházková J, Hofmanová J, et al. Colon cancer and perturbations of the sphingolipid metabolism. Int J Mol Sci. 2019;20:6051. doi: 10.3390/ijms20236051
  26. Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. Mass Spectrom. Rev. 2018;37:107-38. doi: 10.1002/mas.21510
  27. Mirnezami R, Spagou K, Vorkas PA, et al. Chemical mapping of the colorectal cancer microenvironment via MALDI imaging mass spectrometry (MALDI-MSI) reveals novel cancer-associated field effects. Mol Oncol. 2014;8:39-49. doi: 10.1016/j.molonc.2013.08.010
  28. Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer. 2021;21(12):753-66. doi: 10.1038/s41568-021-00388-4
  29. Zhao G, Tan Y, Cardenas H, et al. Ovarian cancer cell fate regulation by the dynamics between saturated and unsaturated fatty acids. Proc Natl Acad Sci USA. 2022;119(41):e2203480119. doi: 10.1073/pnas.2203480119
  30. Igal RA. Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis. 2010;31(9):1509-15. doi: 10.1093/carcin/bgq131
  31. Gradilla AC, Sanchez-Hernandez D, Brunt L, Scholpp S. From top to bottom: Cell polarity in Hedgehog and Wnt trafficking. BMC Biol. 2018;16(1):37. doi: 10.1186/s12915-018-0511-x
  32. Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693-8. doi: 10.1038/s41586-019-1707-0
  33. Aglago EK, Murphy N, Huybrechts I, et al. Dietary intake and plasma phospholipid concentrations of saturated, monounsaturated and trans fatty acids and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Int J Cancer. 2021. doi: 10.1002/ijc.33615
  34. Du W, Hua F, Li X, et al. Loss of Optineurin Drives Cancer Immune Evasion via Palmitoylation-Dependent IFNGR1 Lysosomal Sorting and Degradation. Cancer Discov. 2021;11(7):1826-43. doi: 10.1158/2159-8290.CD-20-1571
  35. Zhang M, Zhou L, Xu Y, et al. A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis. Nature. 2020;586(7829):434-9. doi: 10.1038/s41586-020-2799-2
  36. Zhang Q, Yang X, Wu J, et al. Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression. Cell Discov. 2023;9(1):26. doi: 10.1038/s41421-022-00515-x
  37. De Araujo Junior RF, Eich C, Jorquera C, et al. Ceramide and palmitic acid inhibit macrophage-mediated epithelial-mesenchymal transition in colorectal cancer. Mol Cell Biochem. 2020;468(1-2):153-68. doi: 10.1007/s11010-020-03719-5
  38. Yu G, Luo H, Zhang N, et al. Loss of p53 Sensitizes Cells to Palmitic Acid-Induced Apoptosis by Reactive Oxygen Species Accumulation. Int J Mol Sci. 2019;20(24):6268. doi: 10.3390/ijms20246268
  39. Deng S, Wang J, Zou F, et al. Palmitic Acid Accumulation Activates Fibroblasts and Promotes Matrix Stiffness in Colorectal Cancer. Cancer Res. 2025;85(10):1784-802. doi: 10.1158/0008-5472.CAN-24-2892
  40. Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut. 2012;61(1):135-49. doi: 10.1136/gut.2010.233718
  41. Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2015;1851(4):469-84. doi: 10.1016/j.bbalip.2014.08.010
  42. D'Angelo S, Motti ML, Meccariello R. ω-3 and ω-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients. 2020;12(9):2751. doi: 10.3390/nu12092751
  43. Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans. 2017;45(5):1105-15. doi: 10.1042/BST20160474
  44. Volpato M, Hull MA. Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer. Cancer Metastasis Rev. 2018;37(2-3): 545-55. doi: 10.1007/s10555-018-9744-y
  45. Mayer K, Seeger W. Fish oil in critical illness. Curr Opin Clin Nutr Metab Care. 2008;11(2):121-7. doi: 10.1097/MCO.0b013e3282f4cdc6
  46. Singer P, Shapiro H, Theilla M, et al. Anti-inflammatory properties of omega-3 fatty acids in critical illness: novel mechanisms and an integrative perspective. Intensive Care Med. 2008;34(9):1580-92. doi: 10.1007/s00134-008-1142-4
  47. Guo Y, Ma B, Li X, et al. n-3 PUFA can reduce IL-6 and TNF levels in patients with cancer. Br J Nutr. 2023;129(1):54-65. doi: 10.1017/S0007114522000575
  48. Kavyani Z, Musazadeh V, Fathi S, et al. Efficacy of the omega-3 fatty acids supplementation on inflammatory biomarkers: An umbrella meta-analysis. Int Immunopharmacol. 2022;111:109104. doi: 10.1016/j.intimp.2022.109104
  49. Chiang N, Serhan CN. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Aspects Med. 2017;58:114-29. doi: 10.1016/j.mam.2017.03.005
  50. Lam CN, Watt AE, Isenring EA, et al. The effect of oral omega-3 polyunsaturated fatty acid supplementation on muscle maintenance and quality of life in patients with cancer: A systematic review and meta-analysis. Clin Nutr. 2021;40(6):3815-26. doi: 10.1016/j.clnu.2021.04.031
  51. Lee SY, Lee J, Park HM, et al. Impact of Preoperative Immunonutrition on the Outcomes of Colon Cancer Surgery: Results from a Randomized Controlled Trial. Ann Surg. 2023;277(3):381-6. doi: 10.1097/SLA.0000000000005140
  52. Pradelli L, Mayer K, Klek S, et al. Omega-3 fatty acids in parenteral nutrition – A systematic review with network meta-analysis on clinical outcomes. Clin Nutr. 2023;42(4):590-9. doi: 10.1016/j.clnu.2023.02.008
  53. Bakker N, van den Helder RS, Stoutjesdijk E, et al. Effects of perioperative intravenous ω-3 fatty acids in colon cancer patients: a randomized, double-blind, placebo-controlled clinical trial. Am J Clin Nutr. 2020;111(2):385-95. doi: 10.1093/ajcn/nqz281
  54. Hofmanová J, Slavík J, Ciganek M, et al. Complex Alterations of Fatty Acid Metabolism and Phospholipidome Uncovered in Isolated Colon Cancer Epithelial Cells. Int J Mol Sci. 2021;22(13):6650. doi: 10.3390/ijms22136650
  55. Cottet V, Vaysse C, Scherrer ML, et al. Fatty acid composition of adipose tissue and colorectal cancer: a case-control study. Am J Clin Nutr. 2015;101(1):192-201. doi: 10.3945/ajcn.114.088948
  56. Liu H, Chen J, Shao W, et al. Efficacy and safety of Omega-3 polyunsaturated fatty acids in adjuvant treatments for colorectal cancer: A meta-analysis of randomized controlled trials. Front Pharmacol. 2023;14:1004465. doi: 10.3389/fphar.2023.1004465
  57. Yessoufou A, Plé A, Moutairou K, et al. Docosahexaenoic acid reduces suppressive and migratory functions of CD4+CD25+ regulatory T-cells. J Lipid Res. 2009;50(12):2377-88. doi: 10.1194/jlr.M900101-JLR200
  58. Woodworth HL, McCaskey SJ, Duriancik DM, et al. Dietary fish oil alters T lymphocyte cell populations and exacerbates disease in a mouse model of inflammatory colitis. Cancer Res. 2010;70(20):7960-9. doi: 10.1158/0008-5472.CAN-10-1396
  59. Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10(3):181-93. doi: 10.1038/nrc2809
  60. Il Lee S, Zuo X, Shureiqi I. 15-Lipoxygenase-1 as a tumor suppressor gene in colon cancer: is the verdict in? Cancer Metastasis Rev. 2011; 30(3-4):481-91. doi: 10.1007/s10555-011-9321-0
  61. Kim GY, Lee JW, Cho SH, et al. Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(6):915-20. doi: 10.1161/ATVBAHA.109.185793
  62. Ihara A, Wada K, Yoneda M, et al. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J Pharmacol Sci. 2007;103(1):24-32. doi: 10.1254/jphs.fp0060651
  63. Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med. 2012;52(9):2013-37. doi: 10.1016/j.freeradbiomed.2012.02.035
  64. Xia D, Wang D, Kim SH, et al. Prostaglandin E2 promotes intestinal tumor growth via DNA methylation. Nat Med. 2012;18(2):224-6. doi: 10.1038/nm.2608
  65. Cen B, Lang JD, Du Y, et al. Prostaglandin E2 Induces miR675-5p to Promote Colorectal Tumor Metastasis via Modulation of p53 Expression. Gastroenterology. 2020;158(4):971-84.e10. doi: 10.1053/j.gastro.2019.11.013
  66. Tanaka T, Uozumi S, Morito K, et al. Metabolic conversion of C20 polymethylene-interrupted polyunsaturated fatty acids to essential fatty acids. Lipids. 2014;49(5):423-9. doi: 10.1007/s11745-014-3896-5
  67. Huang YS, Huang WC, Li CW, Chuang LT. Eicosadienoic acid differentially modulates production of pro-inflammatory modulators in murine macrophages. Mol Cell Biochem. 2011;358(1-2):85-94. doi: 10.1007/s11010-011-0924-0
  68. Wang L, Hang D, He X, et al. A prospective study of erythrocyte polyunsaturated fatty acids and risk of colorectal serrated polyps and conventional adenomas. Int J Cancer. 2021;148(1):57-66. doi: 10.1002/ijc.33190
  69. Soundararajan R, Maurin MM, Rodriguez-Silva J, et al. Integration of lipidomics with targeted, single cell, and spatial transcriptomics defines an unresolved pro-inflammatory state in colon cancer. Gut. 2025;74(4):586-602. doi: 10.1136/gutjnl-2024-332535
  70. Levy BD, Clish CB, Schmidt B, et al. Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol. 2001;2:612-9. doi: 10.1038/89759
  71. Zhao W, Prijic S, Urban BC, et al. Candidate Antimetastasis Drugs Suppress the Metastatic Capacity of Breast Cancer Cells by Reducing Membrane Fluidity. Cancer Res. 2016;76(7):2037-49. doi: 10.1158/0008-5472.CAN-15-1970
  72. Yang Z, Qin W, Chen Y, et al. Cholesterol inhibits hepatocellular carcinoma invasion and metastasis by promoting CD44 localization in lipid rafts. Cancer Lett. 2018;429:66-77. doi: 10.1016/j.canlet.2018.04.038
  73. Moleón Baca JA, Ontiveros Ortega A, Aránega Jiménez A, Granados Principal S. Cells electric charge analyses define specific properties for cancer cells activity. Bioelectrochemistry. 2022;144:108028. doi: 10.1016/j.bioelechem.2021.108028
  74. Moreddu R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. Adv Sci (Weinh). 2024;11(1):e2304110. doi: 10.1002/advs.202304110
  75. Chaudhary P, Maharjan N, Subedi B. Microangiopathic Hemolytic Anemia as the Initial Presentation of Metastatic Signet-Ring Cell Carcinoma of the Colon: A Case Report. Cureus. 2024;16(12):e76034. doi: 10.7759/cureus.76034
  76. Horne MK 3rd, Cooper B. Microangiopathic hemolytic anemia with metastatic adenocarcinoma: response to chemotherapy. South Med J. 1982;75(4):503-4. doi: 10.1097/00007611-198204000-00040
  77. Ghirmai S, Krona A, Wu H, et al. Relationship between hemolysis and lipid oxidation in red blood cell-spiked fish muscle; dependance on pH and blood plasma. Sci Rep. 2024;14(1):1943. doi: 10.1038/s41598-024-52090-8
  78. Lee RA, Kim HA, Kang BY, Kim KH. Hemoglobin induces colon cancer cell proliferation by release of reactive oxygen species. World J Gastroenterol. 2006;12(35):5644-50. doi: 10.3748/wjg.v12.i35.5644
  79. Koukourakis MI, Giatromanolaki A, Polychronidis A, et al. Endogenous markers of hypoxia/anaerobic metabolism and anemia in primary colorectal cancer. Cancer Sci. 2006;97(7):582-8. doi: 10.1111/j.1349-7006.2006.00220.x
  80. Bastide NM, Pierre FH, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila). 2011;4(2):177-84. doi: 10.1158/1940-6207.CAPR-10-0113
  81. Xue X, Shah YM. Intestinal iron homeostasis and colon tumorigenesis. Nutrients. 2013;5(7):2333-51. doi: 10.3390/nu5072333
  82. Kucharzewski M, Braziewicz J, Majewska U, Gózdz S. Iron concentrations in intestinal cancer tissue and in colon and rectum polyps. Biol Trace Elem Res. 2003;95(1):19-28. doi: 10.1385/BTER:95:1:19
  83. McSorley ST, Tham A, Steele CW, et al. Quantitative data on red cell measures of iron status and their relation to the magnitude of the systemic inflammatory response and survival in patients with colorectal cancer. Eur J Surg Oncol. 2019;45(7):1205-11. doi: 10.1016/j.ejso.2019.02.027

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Normalization of the levels of electrical and viscoelastic parameters of erythrocytes, the content of fatty acids in erythrocyte membranes, and blood serum (on the left – levels of indicators before normalization, on the right – after normalization).

Download (555KB)
3. Fig. 2. Principal component analysis (PCA) to distinguish patients with stage I–II CRC with poor outcome and stable outcome.

Download (126KB)
4. Fig. 3. ROC curves of the models for establishing prognosis in colorectal cancer: a – for erythrocyte C16:0 – AUC 0.786 (95% CI 0.638–0.901); b – for serum C20:2n-6 – AUC 0.716 (95% CI 0.57–0.853); c – for erythrocyte C22:4n-6 – AUC 0.697 (95% CI 0.528–0.838); d – SFA/PUFA in erythrocyte membranes –AUC 0.689 (95% CI 0.53–0.841); e – list of diagnostic panels including different numbers of fatty acids, with AUC from 0.587 to 0.663; f – A diagnostic model including red blood cell levels of C16:0, SFA/PUFA, SFA, PUFA and serum level of C20:2n-6 [AUC 0.663 (95% CI 0.483–0.801)].

Download (324KB)
5. Fig. 4. The contribution of erythrocyte membrane fatty acid levels and blood serum to distinguishing patients with stage 1–2 CRC with unfavorable outcome and stabilization.

Download (100KB)

Copyright (c) 2025 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».