The use of plant protein-based foods for the correction of dietary patterns in alimentary-dependent diseases: opportunities and prospects. A review

Cover Page

Cite item

Full Text

Abstract

Idiopathic recurrent pericarditis is a rare pathology characterised by recurrent inflammation in the cardiac cavity. Treatment of recurrent pericarditis is The possibilities of using food products based on vegetable protein to correct nutritional patterns in alimentary-dependent diseases (ADDs) of the digestive system have not been sufficiently studied. The purpose of the review is to analyze the literature data to determine the possibilities of using vegetable protein products to correct nutritional patterns in the most common ADDs of the digestive system. We searched the PubMed/MEDLINE, EMBASE, Google Scholar, CyberLeninka, and Elibrary databases with keywords corresponding to the study goals. There were 314 studies identified; however, after excluding duplicate publications and analyzing relevant data, 66 papers were included. The analysis results showed a possible benefit from using vegetable protein, which may be of clinical importance in diseases such as metabolically associated fatty liver disease, gastroesophageal reflux disease, and irritable bowel syndrome. Data on the adequacy of diets with vegetable protein and possible adverse events during their use are presented. The technological and economic prospects of using products based on vegetable proteins to correct nutritional patterns in patients with ADDs of the digestive system are addressed.

About the authors

Sergey V. Morozov

Federal Research Centre of Nutrition, Biotechnology and Food Safety; Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: morosoffsv@mail.ru
ORCID iD: 0000-0001-6816-3058

д-р мед. наук, вед. науч. сотр. отд-ния гастроэнтерологии, гепатологии и диетотерапии; проф. каф. гастроэнтерологии

Russian Federation, Moscow; Moscow

Vladimir I. Pilipenko

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: morosoffsv@mail.ru
ORCID iD: 0000-0001-5632-1880

канд. мед. наук, науч. сотр. отд-ния гастроэнтерологии, гепатологии и диетотерапии

Russian Federation, Moscow

Vasily A. Isakov

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: morosoffsv@mail.ru
ORCID iD: 0000-0002-4417-8076

д-р мед. наук, проф., зав. отд-нием гастроэнтерологии, гепатологии и диетотерапии

Russian Federation, Moscow

Armida N. Sasunova

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: morosoffsv@mail.ru
ORCID iD: 0000-0001-8896-5285

врач-эндокринолог

Russian Federation, Moscow

Alexey A. Goncharov

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: morosoffsv@mail.ru
ORCID iD: 0000-0002-8099-8602

мл. науч. сотр. отд-ния гастроэнтерологии, гепатологии и диетотерапии

Russian Federation, Moscow

Alla A. Kochetkova

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: morosoffsv@mail.ru
ORCID iD: 0000-0001-9821-192X

чл.-кор. РАН, д-р техн. наук, проф., зав. лаб. пищевых биотехнологий и специализированных продуктов

Russian Federation, Moscow

References

  1. Терехин С.П., Ахметова С.В., Молотов-Лучанский В.Б., и др. Проблема неинфекционных алиментарно-зависимых заболеваний в современном мире. Медицина и экология. 2018;(2):40-8 [Teryokhin SP, Akhmetova SV, Molotov-Luchansky VB, et al. Problem of non-infectious alimentary-dependent diseases in the world. Medicine and Ecology. 2018;(2):40-8 (in Russian)].
  2. Permanyer I, Trias-Llimós S, Spijker JJA. Best-practice healthy life expectancy vs. life expectancy: Catching up or lagging behind? Proc Natl Acad Sci USA. 2021;118(46):e2115273118. doi: 10.1073/pnas.2115273118
  3. Riboli E, Hunt KJ, Slimani N, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6B):1113-24. doi: 10.1079/PHN2002394
  4. Hughes J, Pearson E, Grafenauer S. Legumes-A Comprehensive Exploration of Global Food-Based Dietary Guidelines and Consumption. Nutrients. 2022;14(15):3080. doi: 10.3390/nu14153080
  5. Green A, Blattmann C, Chen C, Mathys A. The role of alternative proteins and future foods in sustainable and contextually-adapted flexitarian diets. Trends in Food Science & Technology. 2022;124:250-5. doi: 10.1016/j.tifs.2022.03.026
  6. Curtain F, Grafenauer S. Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients. 2019;11(11):2603. doi: 10.3390/nu11112603
  7. Lichtenstein AH, Appel LJ, Vadiveloo M, et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation. 2021;144(23):e472-47. doi: 10.1161/CIR.0000000000001031
  8. Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447-92. doi: 10.1016/S0140-6736(18)31788-4
  9. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol. 2024;81(3):492-542. doi: 10.1016/j.jhep.2024.04.031
  10. Khazaei Y, Dehghanseresht N, Ebrahimi Mousavi S, et al. Association Between Protein Intake From Different Animal and Plant Origins and the Risk of Non-Alcoholic Fatty Liver Disease: A Case-Control Study. Clin Nutr Res. 2023;12(1):29-39. doi: 10.7762/cnr.2023.12.1.29
  11. Alferink LJ, Kiefte-de Jong JC, Erler NS, et al. Association of dietary macronutrient composition and non-alcoholic fatty liver disease in an ageing population: the Rotterdam Study. Gut. 2019;68(6):1088-98. doi: 10.1136/gutjnl-2017-315940
  12. Markova M, Pivovarova O, Hornemann S, et al. Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes. Gastroenterology. 2017;152(3): 571-85.e8. doi: 10.1053/j.gastro.2016.10.007
  13. Lang S, Martin A, Farowski F, et al. High Protein Intake Is Associated With Histological Disease Activity in Patients With NAFLD. Hepatol Commun. 2020;4(5):681-95. doi: 10.1002/hep4.1509
  14. Cocate PG, Natali AJ, de Oliveira A, et al. Red but not white meat consumption is associated with metabolic syndrome, insulin resistance and lipid peroxidation in Brazilian middle-aged men. Eur J Prev Cardiol. 2015;22(2):223-30. doi: 10.1177/2047487313507684
  15. Zhang S, Cui Z, Zhang H, et al. Pea Albumin Extracted from Pea (Pisum sativum L.) Seeds Ameliorates High-Fat-Diet-Induced Non-Alcoholic Fatty Liver Disease by Regulating Lipogenesis and Lipolysis Pathways. Nutrients. 2024;16(14):2232. doi: 10.3390/nu16142232
  16. Yang Z, Gong D, He X, et al. Association between daidzein intake and metabolic associated fatty liver disease: A cross-sectional study from NHANES 2017-2018. Front Nutr. 2023;10:1113789. doi: 10.3389/fnut.2023.1113789
  17. Zhang S, Kumari S, Gu Y, et al. Soy Food Intake Is Inversely Associated with Newly Diagnosed Nonalcoholic Fatty Liver Disease in the TCLSIH Cohort Study. J Nutr. 2020;150(12):3280-27. doi: 10.1093/jn/nxaa297
  18. McCarthy EM, Rinella ME. The role of diet and nutrient composition in nonalcoholic Fatty liver disease. J Acad Nutr Diet. 2012;112(3):401-9. doi: 10.1016/j.jada.2011.10.007
  19. Amanat S, Eftekhari MH, Fararouei M, et al. Genistein supplementation improves insulin resistance and inflammatory state in non-alcoholic fatty liver patients: A randomized, controlled trial. Clin Nutr. 2018;37(4):1210-25. doi: 10.1016/j.clnu.2017.05.028
  20. Li Y, Deng X, Guo X, et al. Preclinical and clinical evidence for the treatment of non-alcoholic fatty liver disease with soybean: A systematic review and meta-analysis. Front Pharmacol. 2023;14:1088614. doi: 10.3389/fphar.2023.1088614
  21. Eslami O, Shidfar F, Maleki Z, et al. Effect of Soy Milk on Metabolic Status of Patients with Nonalcoholic Fatty Liver Disease: A Randomized Clinical Trial. J Am Coll Nutr. 2019;38(1):51-8. doi: 10.1080/07315724.2018.1479990
  22. Liu N, Song Z, Jin W, et al. Pea albumin extracted from pea (Pisum sativum L.) seed protects mice from high fat diet-induced obesity by modulating lipid metabolism and gut microbiota. Journal of Functional Foods. 2022;97:105234. doi: 10.1016/j.jff.2022.105234
  23. Liu B, Wang Z, Liang M, Yang L. Rice Protein Reduces Triglyceride Levels through Modulating CD36, MTP, FATP, and FABP Expression in Growing and Adult Rats. Foods. 2024;13(17):2704. doi: 10.3390/foods13172704
  24. Kubota M, Watanabe R, Hosojima M, et al. Rice bran protein ameliorates diabetes, reduces fatty liver, and has renoprotective effects in Zucker Diabetic Fatty rats. Journal of Functional Foods. 2020;70:103981. doi: 10.1016/j.jff.2020.103981
  25. Kadowaki M, Kubota M, Watanabe R. Physiological Multifunctions of Rice Proteins of Endosperm and Bran. J Nutr Sci Vitaminol (Tokyo). 2019;65(Suppl.):S42-4. doi: 10.3177/jnsv.65.S42
  26. Alferink LJM, Erler NS, de Knegt RJ, et al. Adherence to a plant-based, high-fibre dietary pattern is related to regression of non-alcoholic fatty liver disease in an elderly population. Eur J Epidemiol. 2020;35(11): 1069-85. doi: 10.1007/s10654-020-00627-2
  27. Ивашкин В.Т., Маев И.В., Трухманов А.С., и др. Рекомендации Российской гастроэнтерологической ассоциации по диагностике и лечению гастроэзофагеальной рефлюксной болезни. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020;30(4):70-97 [Ivashkin VT, Maev IV, Trukhmanov AS, et al. Recommendations of the Russian Gastroenterological Association in Diagnosis and Treatment of Gastroesophageal Reflux Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(4):70-97 (in Russian)]. doi: 10.22416/1382-4376-2020-30-4-70-97
  28. Исаков В.А., Морозов С.В., Ставраки Е.С., Комаров Р.М. Анализ распространенности изжоги: национальное эпидемиологическое исследование взрослого городского населения (АРИАДНА). Экспериментальная и клиническая гастроэнтерология. 2008;1: 20-30 [Isakov VA, Morozov SV, Stavraki ES, Komarov RM. Heartburn prevalence analysis: national epidemiologic examination of adult urban population (ARIADNA). Experimental & Clinical Gastroenterology. 2008;1:20-30 (in Russian)].
  29. Кропочев В.С., Морозов С.В., Ланцева М.А., и др. Анализ особенностей питания у больных гастроэзофагеальной рефлюксной болезнью: результаты пилотного исследования. Терапевтический архив. 2020;92(8):66-72 [Kropochev VS, Morozov SV, Lantseva MA, et al. Food patterns in Russian patients with gastroesophageal reflux disease: the results of pilot comparative study. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(8):66-72 (in Russian)]. doi: 10.26442/00403660.2020.08.000760
  30. Borodina G, Morozov S. Children With Gastroesophageal Reflux Disease Consume More Calories and Fat Compared to Controls of Same Weight and Age. J Pediatr Gastroenterol Nutr. 2020;70(6):808-14. doi: 10.1097/MPG.0000000000002652
  31. Морозов С.В. Гастроэзофагеальная рефлюксная болезнь: роль факторов питания в патогенезе и лечении. Вопросы питания. 2013;82(5):10-22 [Morozov SV. Gastroesophageal reflux disease: the role of nutritional patterns in pathogenesis and treatment. Voprosy pitaniia. 2013;82(5):10-22 (in Russian)].
  32. Rizzo G, Baroni L, Bonetto C, et al. The Role of a Plant-Only (Vegan) Diet in Gastroesophageal Reflux Disease: Online Survey of the Italian General Population. Nutrients. 2023;15(22):4725. doi: 10.3390/nu15224725
  33. Baroni L, Bonetto C, Solinas I, et al. Diets including Animal Food Are Associated with Gastroesophageal Reflux Disease. Eur J Investig Health Psychol Educ. 2023;13(12):2736-76. doi: 10.3390/ejihpe13120189
  34. Bhatia SJ, Reddy DN, Ghoshal UC, et al. Epidemiology and symptom profile of gastroesophageal reflux in the Indian population: report of the Indian Society of Gastroenterology Task Force. Indian J Gastroenterol. 2011;30(3):118-27. doi: 10.1007/s12664-011-0112-x
  35. Wenzl EM, Riedl R, Borenich A, et al. Low prevalence of gastroesophageal reflux symptoms in vegetarians. Indian J Gastroenterol. 2021;40(2): 154-61. doi: 10.1007/s12664-021-01156-w
  36. Jung JG, Kang HW, Hahn SJ, et al. Vegetarianism as a protective factor for reflux esophagitis: a retrospective, cross-sectional study between Buddhist priests and general population. Dig Dis Sci. 2013;58(8): 2244-52. doi: 10.1007/s10620-013-2639-4
  37. Morozov S, Isakov V, Konovalova M. Fiber-enriched diet helps to control symptoms and improves esophageal motility in patients with non-erosive gastroesophageal reflux disease. World J Gastroenterol. 2018;24(21):2291-29. doi: 10.3748/wjg.v24.i21.2291
  38. Morozov S, Sentsova T. Local inflammatory response to gastroesophageal reflux: Association of gene expression of inflammatory cytokines with esophageal multichannel intraluminal impedance-pH data. World J Clin Cases. 2022;10(26):9254-23. doi: 10.12998/wjcc.v10.i26.9254
  39. Martinucci I, Guidi G, Savarino EV, et al. Vegetal and Animal Food Proteins Have a Different Impact in the First Postprandial Hour of Impedance-pH Analysis in Patients with Heartburn. Gastroenterol Res Pract. 2018;2018:7572430. doi: 10.1155/2018/7572430
  40. Greger M. Best foods for acid reflux (video transcript). NutritionFacts.org. 2019. Available at: https://nutritionfacts.org/blog/best-foods-for-acid-reflux/#:~:text = Based%20on%20a%20study%20of,protective%20factor%20for%20reflux%20esophagitis. Accessed: 27.04.2025.
  41. Tan ESS, Zaman R, Memon MA, Tan CK. Effect of Fermented Soybean (FSB) Supplementation on Gastroesophageal Reflux Disease (GERD). Nutrients. 2024;16(16):2779. doi: 10.3390/nu16162779
  42. Flashback Friday: Diet and GERD Acid Reflux Heartburn. Available at: https://nutritionfacts.org/video/flashback-friday-diet-gerd-acid-reflux-heartburn/#:~:text = Then%20in%20terms%20of%20later,appeared%20to%20increase%20cancer%20risk. Accessed: 09.05.2025.
  43. Zalvan CH, Hu S, Greenberg B, Geliebter J. A Comparison of Alkaline Water and Mediterranean Diet vs Proton Pump Inhibition for Treatment of Laryngopharyngeal Reflux. JAMA Otolaryngol Head Neck Surg. 2017;143(10):1023-9. doi: 10.1001/jamaoto.2017.1454
  44. Hasani M, Mansour A, Asayesh H, et al. Effect of glutamine supplementation on cardiometabolic risk factors and inflammatory markers: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2021;21(1):190. doi: 10.1186/s12872-021-01986-8
  45. Mazzawi T, El-Salhy M. Effect of diet and individual dietary guidance on gastrointestinal endocrine cells in patients with irritable bowel syndrome (Review). Int J Mol Med. 2017;40(4):943-52. doi: 10.3892/ijmm.2017.3096
  46. Rej A, Sanders DS. Gluten-Free Diet and Its 'Cousins' in Irritable Bowel Syndrome. Nutrients. 2018;10(11):1727. doi: 10.3390/nu10111727
  47. Boettcher E, Crowe SE. Dietary proteins and functional gastrointestinal disorders. Am J Gastroenterol. 2013;108(5):728-36. doi: 10.1038/ajg.2013.97
  48. Biesiekierski JR, Newnham ED, Irving PM, et al. Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Am J Gastroenterol. 2011;106(3):508-14. doi: 10.1038/ajg.2010.487
  49. Biesiekierski JR, Peters SL, Newnham ED, et al. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology. 2013;145(2):320-8.e1-3. doi: 10.1053/j.gastro.2013.04.051
  50. Buscail C, Sabate JM, Bouchoucha M, et al. Association between self-reported vegetarian diet and the irritable bowel syndrome in the French NutriNet cohort. PLoS One. 2017;12(8):e0183039. doi: 10.1371/journal.pone.0183039
  51. Pilipenko V, Lanceva M, Isakov V, Vlasova A. Does a Decrease in Food Diversity Predispose to SIBO? Current Developments in Nutrition. 2021;5:443. doi: 10.1093/cdn/nzab038_055
  52. Michel F, Hartmann C, Siegrist M. Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Quality and Preference. 2020;87:104063. doi: 10.1016/j.foodqual.2020.104063
  53. Farsi DN, Uthumange D, Munoz Munoz J, Commane DM. The nutritional impact of replacing dietary meat with meat alternatives in the UK: a modelling analysis using nationally representative data. Br J Nutr. 2022;127(11):1731-71. doi: 10.1017/S0007114521002750
  54. Kaartinen NE, Tapanainen H, Maukonen M, et al. Partial replacement of red and processed meat with legumes: a modelling study of the impact on nutrient intakes and nutrient adequacy on the population level. Public Health Nutr. 2023;26(2):303-14. doi: 10.1017/S1368980022002440
  55. Lawrence AS, Huang H, Johnson BJ, Wycherley TP. Impact of a Switch to Plant-Based Foods That Visually and Functionally Mimic Animal-Source Meat and Dairy Milk for the Australian Population – A Dietary Modelling Study. Nutrients. 2023;15(8):1825. doi: 10.3390/nu15081825
  56. Schweiggert-Weisz U, Etzbach L, Gola S, et al. Opinion Piece: New Plant-Based Food Products Between Technology and Physiology. Mol Nutr Food Res. 2024;68(20):e2400376. doi: 10.1002/mnfr.202400376
  57. Estévez M, Arjona A, Sánchez-Terrón G, et al. Ultra-processed vegan foods: Healthy alternatives to animal-source foods or avoidable junk? J Food Sci. 2024;89(11):7008-01. doi: 10.1111/1750-3841.17407
  58. Salomé M, Huneau JF, Le Baron C, et al. Substituting Meat or Dairy Products with Plant-Based Substitutes Has Small and Heterogeneous Effects on Diet Quality and Nutrient Security: A Simulation Study in French Adults (INCA3). J Nutr. 2021;151(8):2435-45. doi: 10.1093/jn/nxab146
  59. Marchese LE, McNaughton SA, Hendrie GA, et al. Modeling the Impact of Substituting Meat and Dairy Products with Plant-Based Alternatives on Nutrient Adequacy and Diet Quality. J Nutr. 2024;154(8):2411-41. doi: 10.1016/j.tjnut.2024.05.029
  60. Mayer Labba IC, Steinhausen H, Almius L, et al. Nutritional Composition and Estimated Iron and Zinc Bioavailability of Meat Substitutes Available on the Swedish Market. Nutrients. 2022;14(19):3903. doi: 10.3390/nu14193903
  61. Kumar M, Tomar M, Potkule J, et al. Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids. 2021;115:106595. doi: 10.1016/j.foodhyd.2021.106595
  62. Siegrist A, Green A, Michel F, Mathys A. Comparing the nutritional value and prices of meat and milk substitutes with their animal-based benchmarks across six European countries. Food Res Int. 2024;197(Pt 1):115213. doi: 10.1016/j.foodres.2024.115213
  63. Hunt JR. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr. 2003;78(Suppl. 3):633S-3S. doi: 10.1093/ajcn/78.3.633S
  64. Gibson RS, Raboy V, King JC. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr Rev. 2018;76(11):793-804. doi: 10.1093/nutrit/nuy028
  65. Samad A, Kim SH, Kim CJ, et al. From Farms to Labs: The New Trend of Sustainable Meat Alternatives. Food Sci Anim Resour. 2025;45(1):13-30. doi: 10.5851/kosfa.2024.e105
  66. Reese I, Schäfer C, Ballmer-Weber B, et al. Vegan diets from an allergy point of view – Position paper of the DGAKI working group on food allergy. Allergol Select. 2023;7:57-83. doi: 10.5414/ALX02400E
  67. Elhalis H, See XY, Osen R, et al. Significance of Fermentation in Plant-Based Meat Analogs: A Critical Review of Nutrition, and Safety-Related Aspects. Foods. 2023;12(17):3222. doi: 10.3390/foods12173222
  68. Augustin Mihalache O, Dellafiora L, Dall'Asta C. A systematic review of natural toxins occurrence in plant commodities used for plant-based meat alternatives production. Food Res Int. 2022;158:111490. doi: 10.1016/j.foodres.2022.111490
  69. Kołodziejczak K, Onopiuk A, Szpicer A, Poltorak A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods. 2021;11(1):105. doi: 10.3390/foods11010105

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».