Myocardial fibrosis: Current aspects of the problem


Cite item

Full Text

Abstract

Fibrosis is one of the main components in the progression of most cardiovascular diseases, including coronary heart disease, by causing structural changes in the myocardium and vascular wall. The quantitative and qualitative characteristics of fibrosis of the myocardium are responsible for decreasing its elastic properties, developing diastolic dysfunction, impairing myocardial contractility, developing systolic dysfunction and cardiac arrhythmias, and worsening coronary blood flow in patients with heart failure of different etiologies. The important aspect of studying fibrosis is not only its interpretation as a model of the typical pathological process, but also its consideration as a systemic lesion of various organs and tissues. At the same time, the identification of myocardial fibrosis biomarkers that are available for their determination in circulating blood is of particular interest. Since there was evidence for the role of fibrosis in developing dysfunction of various organs and ensuring the systematicity of most diseases, especially at their development stages, the process of fibrosis came to be regarded as a promising therapeutic target. It is relevant to further investigate myocardial fibrosis, which is aimed at increasing the efficiency of its diagnosis and predicting its course and pathogenetically sound therapy.

About the authors

V N Karetnikova

НИИ комплексных проблем сердечно-сосудистых заболеваний

Кемерово, Россия

V V Kashtalap

Кемеровская государственная медицинская академия Минздрава России

Кемерово, Россия

S N Kosareva

Кемеровская государственная медицинская академия Минздрава России; Кемеровский кардиологический диспансер

O L Barbarash

НИИ комплексных проблем сердечно-сосудистых заболеваний; Кемеровская государственная медицинская академия Минздрава России

References

  1. Демографический ежегодник России. 2010: статистический сборник. М.: Росстат; 2010.
  2. Roger VL, Go AS, Lloyd-Jones DM et al. Executive summary: heart disease and stroke statistics — 2012 update: a report from the American Heart Association. Circulation. 2012;125:188-197. doi: 10.1161/cir.0b013e3182456d46
  3. Бойцов С.А., Самородская И.В. Смертность и потерянные годы жизни в результате преждевременной смертности от болезней системы кровообращения. Кардиоваскуляр. терапия и профилактика. 2014;13(2):5-11.
  4. López B, González A, Ravassa S, Beaumont J, Moreno M U, San José G, Querejeta R, Díez J. Circulating biomarkers of myocardial fibrosis. Journal of the American College of Cardiology. 2015;65(22):2449-2456. doi:org/10.1016/j.jacc.2015.04.026
  5. Weber KT, Pick R, Jalil JE, Janicki JS, Carroll EP. Patterns of myocardial fibrosis. Journal of Molecular and Cellular Cardiology. 1989;21(Suppl.5):121-131.
  6. Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. Journal of the American College of Cardiology. 1989;13:1637-1652. doi:org/10.1016/0735-1097(89)90360-4
  7. Zeisberg EM, Tarnavski O, Zeisberg M et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Jurnal of the Nature Medicine. 2007;13:952-961. doi: 10.1038/nm1613
  8. Moore-Morris T, Guimaraes-Camboa N, Banerjee I, et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. Journal of Clinical Investigation. 2014;124:2921-2934. doi: 10.1172/jci74783
  9. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128:388-400. doi: 10.1161/circulationaha.113.001878
  10. Matthay MA. Resolution of pulmonary edema. Thirty years of progress. American Journal of Respiratory and Critical Care Medicine. 2014;189:1301-1308. doi: 10.1164/rccm.201403-0535oe
  11. Virzi G, Day S, de Cal M, Vescovo G, Ronco C. Heart-kidney crosstalk and role of humoral signaling in critical illness. Critical Care. 2014;18:201. doi: 10.1186/cc13177
  12. Husain-Syed F, McCullough P A, Birk H-W, Renker M, Brocca A, Seeger W, Ronco C. Cardio-pulmonary-renal interactions. Journal of the American College of Cardiology. 2015;65(22):2433-2448. doi: 10.1016/j.jacc.2015.04.024
  13. Hu MC, Shi M, Cho HJ, et al. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. Journal of the American Society of Nephrology. 2014 Oct 17[E-pub ahead of print]. doi: 10.1681/asn.2014050465
  14. Oh HJ, Nam BY, Lee MJ, et al. Decreased circulating Klotho levels in patients undergoing dialysis and relationship to oxidative stress and inflammation. Peritoneal Dialysis International. 2015;35:43-51. doi: 10.3747/pdi.2013.00150
  15. Xie J, Yoon J, An SW, Kuro-O M, Huang CL. Soluble Klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. Journal of the American Society of Nephrology. 2015;26:1150-1160. doi: 10.1681/asn.2014040325
  16. Itoh N, Ohta H. Pathophysiological roles of FGF signaling in the heart. Frontiers in Physiology. 2013;4:247. doi: 10.3389/fphys.2013.00247
  17. Zile MR, Baicu CF, Ikonomidis J, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131:1247-1259. doi: 10.1161/circulationaha.114.013215
  18. Querejeta R, López B, González A, et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation. 2004;110:1263-1268. doi: 10.1161/01.cir.0000140973.60992.9a
  19. Takarada A, Yokota Y, Fukuzaki H. Analysis of ventricular arrhythmias in patients with dilated cardiomyopathy—relationship between the effects of antiarrhythmic agents and severity of myocardial lesions. Japanese Circulation Journal. 1990;54:260-271. doi: 10.1253/jcj.54.260
  20. Dai Z, Aoki T, Fukumoto Y, Shimokawa H. Coronary perivascular fibrosis is associated with impairment of coronary blood flowin patients with non-ischemic heart failure. Journal of Cardiology. 2012;60:416-421. doi: 10.1016/j.jjcc.2012.06.009
  21. Spach MS, Boineau JP. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing and Clinical Electrophysiology. 1997;20: 397-413. doi: 10.1111/j.1540-8159.1997.tb06199.x
  22. Miragoli M, Gaudesius G, Rohr S. Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circulation Research. 2006;98:801-810. doi: 10.1161/01.res.0000214537.44195.a3
  23. Wu KC, Weiss RG, Thiemann DR, et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. Journal of the American College of Cardiology. 2008;51:2414-2421. doi: 10.1016/j.jacc.2008.03.018
  24. Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126:1206-1216. doi: 10.1161/circulationaha.111.089409
  25. Ichiki T, Huntley BK, Sangaralingham SJ, Harty G J, Burnett JC. Atrium fibrosis and inflammation: impaired atrial natriuretic peptide system in experimental heart failure. Circulation. 2014;130:A12651.
  26. Rabbat MG, Sayegh B, Stiff A, Syed MA., Brian Vetter, Kim Chan1, Tonye Teme, Wilber DJ. Epicardial adipose tissue volume predicts extent of left atrial fibrosis in patients with atrial fibrillation. Circulation. 2014;130:A16860.
  27. Werner S, Alzheimer C. Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine & Growth Factor Reviews. 2006;17:157-171. doi: 10.1016/j.cytogfr.2006.01.001
  28. Yamashita S, Maeshima A, Kojima I, Nojima Y. Activin A is a potent activator of renal interstitial fibroblasts. Journal of the American Society of Nephrology. 2004;15:91-101. doi: 10.1097/01.asn.0000103225.68136.e6
  29. Ohnishi N, Miyata T, Ohnishi H, Yasuda H, Tamada K, Ueda N, Mashima H, Sugano K. Activin A is an autocrine activator of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis. Gut. 2003;52:1487-1493. doi: 10.1136/gut.52.10.1487
  30. Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Fabrice Atassi F, Amour J, Leprince P, Dutour A, Clement K, Hatem SN. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. European Heart Journal. 2013;36:795-805. doi: 10.1093/eurheartj/eht099
  31. Azevedo CF, Nigri M, Higuchi ML, et al. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. Journal of the American College of Cardiology. 2010;56:278-287. doi: 10.1016/j.jacc.2009.12.074
  32. Aoki T, Fukumoto Y, Sugimura K, et al. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. Comparison between preserved and reduced ejection fraction heart failure. Circulation journal. 2011;75:2605-2613.
  33. López B, Querejeta R, González A, Beaumont J, Larman M, Díez J. Impact of treatment on myocardial lysyl oxidase expression and collagen cross-linking in patients with heart failure. Hypertension. 2008;53:236-242. doi: 10.1161/hypertensionaha.108.125278
  34. Yamada T, Fukunami M, Ohmori M, et al. Whichsubgroup of patients with dilated cardiomyopathywould benefit from long-term beta-blocker therapy? A histologic viewpoint. Journal of the American College of Cardiology. 1993;21:628-633. doi: 10.1016/0735-1097(93)90094-h
  35. Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circulation Research. 2012;110:1125-1138. doi: 10.1161/circresaha.111.246108
  36. Hoyt RH, Erickson E, Collins SM, Skorton DJ. Computer-assisted quantitation of myocardial fibrosis in histologic section. Arch Pathol Lab Med. 1984;108:280-283.
  37. Pearlman ES, Weber KT, Janicki JS, Pietra GG, Fishman AP. Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest. 1982;46:158-164.
  38. Treibel TA, White SK, Moon JC. Myocardial tissue characterization: histological and pathophysiological correlation. Current Cardiovascular Imaging Reports. 2014;7:9254. doi: 10.1007/s12410-013-9254-9
  39. López B, Querejeta R, González A, Sánchez E, Larman M, Díez J. Effects of loop diuretics on myocardial fibrosis and collagen type I turnover in chronic heart failure. Journal of the American College of Cardiology. 2004;43:2028-2035. doi: 10.1016/j.jacc.2003.12.052
  40. Querejeta R, Varo N, López B, et al. Serum carboxy-terminal propeptide procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000;101:1729-1735. doi: 10.1161/01.cir.101.14.1729
  41. Klappacher G, Franzen P, Haab D, et al. Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. The American Journal of Cardiology. 1995;75:913-918. doi: 10.1016/s0002-9149(99)80686-9
  42. Díez J, Querejeta R, López B, González A, Larman M, Martínez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105:2512-2517. doi: 10.1161/01.cir.0000017264.66561.3d
  43. Izawa H, Murohara T, Nagata K, et al. Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation. 2005;112:2940-2945. doi: 10.1161/circulationaha.105.571653
  44. Wasywich CA, Webster MW, Richards AM, Stewart RA. Coronary sinus and ascending aortic levels of aldosterone, angiotensin II, and B-type natriuretic peptide in patients with aortic stenosis and in patients with coronary heart disease. The American Journal of Cardiology. 2006;97:1068-1072. doi: 10.1016/j.amjcard.2005.10.048
  45. Kupari M, Laine M, Turto H, Lommi J, Werkkala K. Circulating collagen metabolites, myocardial fibrosis and heart failure in aortic valve stenosis. The Journal of Heart Valve Disease. 2013;22:166-176.
  46. Kaye DM, Khammy O, Mariani J, Maeder MT. Relationship of circulating matrix biomarkers to myocardial matrix metabolism in advanced heart failure. European Journal of Heart Failure. 2013;15:292-298. doi: 10.1093/eurjhf/hfs179
  47. Ellims AH, Taylor AJ, Mariani JA, et al. Evaluating the utility of circulating biomarkers of collagen synthesis in hypertrophic cardiomyopathy. irculation: Europoan Jonrnal of Heart Failure. 2014;7:271-278. doi: 10.1161/circheartfailure.113.000665
  48. López B, Querejeta R, González A, Larman M, Díez J. Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure: potential role of lysyl oxidase. Hypertension. 2012;60:677-683. doi: 10.1161/hypertensionaha.112.196113
  49. López B, González A, Díez J. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation. 2010;121:1645-1654. doi: 10.1161/circulationaha.109.912774
  50. Badenhorst D, Maseko M, Tsotetsi OJ, et al. Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovascular Research. 2003;57:632-641. doi: 10.1016/s0008-6363(02)00733-2
  51. Kasner M, Westermann D, López B, et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure with normal ejection fraction. Journal of the American College of Cardiology. 2011;57:977-985. doi: 10.1016/j.jacc.2010.10.024
  52. López B, González A, Querejeta R, Larman M, Díez J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. Journal of the American College of Cardiology. 2006;48:89-96. doi: 10.1016/j.jacc.2006.01.077
  53. Lok SI, Nous FM, van Kuik J, et al. Myocardial fibrosis and pro-fibrotic markers in end-stage heart failure patients during continuous-flow left ventricular assist device support. European Journal of Cardio-Thoracic Surgery. 2015 Jan 21 [E-pub ahead of print]. doi: 10.1093/ejcts/ezu539
  54. López B, González A, Lindner D, et al. Osteopontin- mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? Cardiovascular Research. 2013;99:111-120. doi: 10.1093/cvr/cvt100
  55. López B, González A, Querejeta R, Larman M, Rábago G, Díez J. Association of cardiotrophin-1 with myocardial fibrosis in hypertensive patients with heart failure. Hypertension. 2014;63:483-489. doi: 10.1161/hypertensionaha.113.0265
  56. Villar AV, García R, Merino D, et al. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. International Journal of Cardiology. 2013;167:2875-2881. doi: 10.1016/j.ijcard.2012.07.021
  57. Lok SI, Nous FM, van Kuik J, et al. Myocardial fibrosis and pro-fibrotic markers in end-stage heart failure patients during continuous-flow left ventricular assist device support. European Journal of Cardio-Thoracic Surgery. 2015 Jan 21 [E-pub ahead of print]. doi: 10.1093/ejcts/ezu539
  58. Villar AV, Cobo M, Llano M, Montalvo C, et al. Plasma levels of transforming growth factor-beta1 reflect left ventricular remodeling in aortic stenosis. PLoS One. 2009;4:e8476. doi: 10.1371/journal.pone.0008476
  59. López B, González A, Querejeta R, Zubillaga E, Larman M, Díez J. Galectin-3 and histological, molecular and biochemical aspects of myocardial fibrosis in heart failure of hypertensive origin. European Journal of Heart Failure. 2015;17:385-392. doi: 10.1002/ejhf.246
  60. Maron BA, Leopold JA. The role of the reninangiotensin- aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover Conference series). Pulmonary Circulation. 2014;4:200-210. doi: 10.1086/675984
  61. Calvier L, Martinez-Martinez E, Miana M, et al. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC: Heart Failure. 2015;3:59-67. doi: 10.1016/j.jchf.2014.08.002
  62. Rockey DC, Bell PD, Hill JA. Fibrosis — a common pathway to organ injury and failure. New England Journal of Medicine. 2015;372:1138-1149. doi: 10.1056/nejmra1300575
  63. Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. Journal of the American College of Cardiology. 2012;60:1031-1042. doi: 10.1016/j.jacc.2012.01.077
  64. Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis: 1. common and organ-specific mechanisms associated with tissue fibrosis. AJP: Cell Physiology. 2013;304:216-225. doi: 10.1152/ajpcell.00328.2012
  65. Massare J, Berry JM, Luo X, et al. Diminished cardiac fibrosis in heart failure is associated with altered ventricular arrhythmia phenotype. Journal of Cardiovascular Electrophysiology. 2010;21:1031-1037. doi: 10.1111/j.1540-8167.2010.01736.x
  66. Dimas V, Ayers C, Daniels J, Joglar JA, Hill JA, Naseem RH. Spironolactone therapy is associated with reduced ventricular tachycardia rate in patients with cardiomyopathy. Pacing and Clinical Electrophysiology. 2011;34:309-314. doi: 10.1111/j.1540-8159.2010.02888.x
  67. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiological Reviews. 2007;87:1285-1342. doi: 10.1152/physrev.00012.2007
  68. Song K, Nam YJ, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599-604. doi: 10.1038/nature11139
  69. Qian L, Huang Y, Spencer CI, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593-598. doi: 10.1038/nature11044

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».