Changes in the metabolomic profile of blood plasma in patients with lymphoma during polychemotherapy
- Authors: Varzieva V.G.1, Boldin A.A.1, Shestakova K.M.1, Baskhanova S.N.1, Samoylov V.M.1, Ilgisonis I.S.1, Kirichenko Y.Y.1, Karimov R.R.1, Smolyarchuk E.A.1, Kudlay D.A.1,2,3, Tarasov V.V.1, Belenkov Y.N.1, Appolonova S.A.1
-
Affiliations:
- Sechenov First Moscow State Medical University (Sechenov University)
- Lomonosov Moscow State Univesity
- State Research Center Institute of Immunology
- Issue: Vol 97, No 11 (2025): INFECTIOUS DISEASES
- Pages: 908-919
- Section: Original articles
- URL: https://journal-vniispk.ru/0040-3660/article/view/365048
- DOI: https://doi.org/10.26442/00403660.2025.11.203491
- ID: 365048
Cite item
Full Text
Abstract
Background. Metabolomics studies in oncology provide a deeper understanding of the biochemical processes associated with tumor growth and the body's response to treatment. In patients with lymphoma, systemic metabolic changes remain poorly understood despite their high clinical significance.
Aim. To evaluate changes in the metabolomic profile of blood plasma in patients with lymphoma at various stages of polychemotherapy (PCT) and compare them to those of healthy volunteers.
Materials and methods. The study included 18 patients with lymphoma from whom blood was collected before treatment and after the first and third courses of PCT. The control group included 30 healthy volunteers. The analysis was performed by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) and included measurements of amino acids, tryptophan and arginine derivatives, and acylcarnitines. Statistical processing was performed using analysis of variance and principal component analysis.
Results. Prior to therapy, patients showed characteristic metabolic disorders: activation of the kynurenine pathway of tryptophan metabolism, a decrease in arginine, and an increase in its methylated derivatives, as well as shifts in the amino acid and acylcarnitine profiles. During PCT, partial normalization of these indicators was observed, especially for the serotonin-melatonin cascade and kynurenine metabolites.
Conclusion. Metabolomics analysis revealed characteristic biochemical changes in patients with lymphoma and their changes over time during treatment. The data obtained emphasize the potential of metabolomics as a tool for monitoring treatment effectiveness and patient condition in oncology.
Keywords
About the authors
Valeria G. Varzieva
Sechenov First Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0002-9067-8717
аспирант, мл. науч. сотр. лаб. фармакокинетики и метаболомного анализа Центра биофармацевтического анализа и метаболомных исследований Института трансляционной медицины и биотехнологии
Russian Federation, MoscowAndrey A. Boldin
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0001-6785-3751
аспирант, мл. науч. сотр. лаб. биоинформатики и фармакологического моделирования Центра биофармацевтического анализа и метаболомных исследований Института трансляционной медицины и биотехнологии
Russian Federation, MoscowKseniia M. Shestakova
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0001-6554-3936
канд. фармацевт. наук, зав. лаб. биоинформатики и фармакологического моделирования Центра биофармацевтического анализа и метаболомных исследований Института трансляционной медицины и биотехнологии
Russian Federation, MoscowSabina N. Baskhanova
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0001-8716-1672
науч. сотр. лаб. фармакокинетики и метаболомного анализа Центра биофармацевтического анализа и метаболомных исследований Института трансляционной медицины и биотехнологии
Russian Federation, MoscowViktor M. Samoylov
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0009-0009-5460-011X
студент V курса, лаборант лаб. фармакокинетики и метаболомного анализа Центра биофармацевтического анализа и метаболомных исследований Института трансляционной медицины и биотехнологии
Russian Federation, MoscowIrina S. Ilgisonis
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0001-6817-6270
канд. мед. наук, проф. каф. госпитальной терапии №1 Института клинической медицины им. Н.В. Склифосовского
Russian Federation, MoscowYulia Yu. Kirichenko
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0002-8271-7704
канд. мед. наук, доц. каф. госпитальной терапии №1 Института клинической медицины им. Н.В. Склифосовского
Russian Federation, MoscowRamzullo R. Karimov
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0009-0000-9431-6054
аспирант каф. госпитальной терапии №1 Института клинической медицины им. Н.В. Склифосовского
Russian Federation, MoscowElena A. Smolyarchuk
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0002-2615-7167
канд. мед. наук, доц., зав. каф. фармакологии Института фармации им. А.П. Нелюбина
Russian Federation, MoscowDmitry A. Kudlay
Sechenov First Moscow State Medical University (Sechenov University); Lomonosov Moscow State Univesity; State Research Center Institute of Immunology
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0003-1878-4467
чл.-кор. РАН, д-р мед. наук, проф. каф. фармакологии Института фармации им. А.П. Нелюбина; зам. декана по научно-технологическому развитию фак-та биоинженерии и биоинформатики, проф. каф. фармакогнозии и промышленной фармации фак-та фундаментальной медицины; вед. науч. сотр. лаб. персонализированной медицины и молекулярной иммунологии №71
Russian Federation, Moscow; Moscow; MoscowVadim V. Tarasov
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0002-9394-7994
д-р фармацевт. наук, дир. Института трансляционной медицины и биотехнологии, проректор по научно-технологическому развитию
Russian Federation, MoscowYuri N. Belenkov
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0002-3014-6129
акад. РАН, д-р мед. наук, проф., зав. каф. госпитальной терапии №1 Института клинической медицины им. Н.В. Склифосовского
Russian Federation, MoscowSvetlana A. Appolonova
Sechenov First Moscow State Medical University (Sechenov University)
Email: varzieva.valeria@gmail.com
ORCID iD: 0000-0002-9032-1558
канд. хим. наук, рук. Центра биофармацевтического анализа и метаболомных исследований Института трансляционной медицины и биотехнологии
Russian Federation, MoscowReferences
- Szymańska K, Park S. Non-Hodgkin Lymphoma: Diagnosis and Treatment. Reference Module in Biomedical Sciences. Elsevier. 2018. doi: 10.1016/B978-0-12-801238-3.65271-6
- Ansell SM. Hodgkin lymphoma: 2025 update on diagnosis, risk-stratification, and management. Am J Hematol. 2024;99(12):2367-78. doi: 10.1002/ajh.27470
- Ansell SM. Non-Hodgkin Lymphoma: Diagnosis and Treatment. Mayo Clin Proc. 2015;90(8):1152-63. doi: 10.1016/j.mayocp.2015.04.025
- Паровичникова Е.Н., Лукьянова И.А., Троицкая В.В., и др. Разработка программной терапии больных острыми миелоидными лейкозами в возрасте моложе 60 лет, основанной на принципах дифференцированного воздействия. Терапевтический архив. 2021;93(7):753-62 [Parovichnikova EN, Lukianova IA, Troitskaya VV, et al. Development of program therapy for patients with acute myeloid leukemia under the age of 60 years, based on the principles of differentiated effects. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(7):753-62 (in Russian)]. doi: 10.26442/00403660.2021.07.200946
- Hyroššová P, Milošević M, Škoda J, et al. Effects of metabolic cancer therapy on tumor microenvironment. Front Oncol. 2022;12:1046630. doi: 10.3389/fonc.2022.1046630
- Alfaifi A, Refai MY, Alsaadi M, et al. Metabolomics: A New Era in the Diagnosis or Prognosis of B-Cell Non-Hodgkin's Lymphoma. Diagnostics (Basel). 2023;13(5):861. doi: 10.3390/diagnostics13050861
- Moskaleva NE, Shestakova KM, Kukharenko AV, et al. Target Metabolome Profiling-Based Machine Learning as a Diagnostic Approach for Cardiovascular Diseases in Adults. Metabolites. 2022;12(12):1185. doi: 10.3390/metabo12121185
- Shestakova KM, Moskaleva NE, Boldin AA, et al. Targeted metabolomic profiling as a tool for diagnostics of patients with non-small-cell lung cancer. Sci Rep. 2023;13(1):11072. doi: 10.1038/s41598-023-38140-7
- Musaeva LM, Shestakova KM, Baskhanova SN, et al. Evaluating treatment responsiveness in rheumatoid arthritis through predictive metabolomic profiling: A systematic review of studies examining methotrexate, TNF, and IL-6 inhibitors as therapeutic interventions. Clin Rheumatol. 2025;44(3):923-52. doi: 10.1007/s10067-025-07355-6
- Barberini L, Noto A, Fattuoni C, et al. The Metabolomic Profile of Lymphoma Subtypes: A Pilot Study. Molecules. 2019;24(13):2367. doi: 10.3390/molecules24132367
- Торшин И.Ю., Громова О.А., Чучалин А.Г. Профилактика и лечение COVID-19 с позиций постгеномного фармакологического анализа. Систематический компьютерный анализ 290 000 научных статей по COVID-19. Терапевтический архив. 2024;96(3):205-11 [Torshin IY, Gromova OA, Chuchalin AG. Prevention and treatment of COVID-19 based on post-genomic pharmacological analysis: Systematic computer analysis of 290,000 scientific articles on COVID-19. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(3):205-11 (in Russian)]. doi: 10.26442/00403660.2024.03.202635
- Фурина Р.Р. Метаболомические исследования в онкологии. Российский онкологический журнал. 2023;19(4):12-5 [Furina RR. Metabolomic research in oncology. Russian Journal of Oncology. 2023;19(4):12-5 (in Russian)]. doi: 10.17816/onco40068
- Markin PA, Brito A, Moskaleva N, et al. Plasma metabolomic profile in prostatic intraepithelial neoplasia and prostate cancer and associations with the prostate-specific antigen and the Gleason score. Metabolomics. 2020;16(7):74. doi: 10.1007/s11306-020-01694-y
- Banoei MM, Mahé E, Mansoor A, et al. NMR-based metabolomic profiling can differentiate follicular lymphoma from benign lymph node tissues and may be predictive of outcome. Sci Rep. 2022;12(1):8294. doi: 10.1038/s41598-022-12445-5
- Stenson M, Pedersen A, Hasselblom S, et al. Serum nuclear magnetic resonance-based metabolomics and outcome in diffuse large B-cell lymphoma patients – a pilot study. Leuk Lymphoma. 2016;57(8): 1814-22. doi: 10.3109/10428194.2016.1140164
- Pera B, Krumsiek J, Assouline SE, et al. Metabolomic Profiling Reveals Cellular Reprogramming of B-Cell Lymphoma by a Lysine Deacetylase Inhibitor through the Choline Pathway. EBioMedicine. 2018;28:80-9. doi: 10.1016/j.ebiom.2018.01.014
- Xiong J, Bian J, Wang L, et al. Dysregulated choline metabolism in T-cell lymphoma: role of choline kinase-α and therapeutic targeting. Blood Cancer J. 2015;5(3):287. doi: 10.1038/bcj.2015.10
- Zheng M, Zhou X, Wang Q, et al. Metabolomic approach to characterize the metabolic phenotypes and varied response to ouabain of diffuse large B-cell lymphoma cells. Leuk Lymphoma. 2021;62(7):1597-608. doi: 10.1080/10428194.2021.1881513
- Mi M, Liu Z, Zheng X, et al. Serum metabolomic profiling based on GC/MS helped to discriminate Diffuse Large B-cell Lymphoma patients with different prognosis. Leuk Res. 2021;111:106693. doi: 10.1016/j.leukres.2021.106693
- Fei F, Zheng M, Xu Z, et al. Plasma Metabolites Forecast Occurrence and Prognosis for Patients With Diffuse Large B-Cell Lymphoma. Front Oncol. 2022;12:894891. doi: 10.3389/fonc.2022.894891
- Medriano CAD, Na J, Lim KM, et al. Liquid Chromatography Mass Spectrometry-Based Metabolite Pathway Analyses of Myeloma and Non-Hodgkin's Lymphoma Patients. Cell J. 2017;19(Suppl. 1):44-54. doi: 10.22074/cellj.2017.4412
- Хронический лимфоцитарный лейкоз / лимфома из малых лимфоцитов. Клинические рекомендации. 2024. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/134_2. Ссылка активна на 08.06.2025 [Khronicheskii limfotsitarnyi leikoz / limfoma iz malykh limfotsitov. Klinicheskie rekomendatsii. 2024. Available at: https://cr.minzdrav.gov.ru/view-cr/134_2. Accessed: 08.06.2025 (in Russian)].
- Лимфома маргинальной зоны. Клинические рекомендации. 2023. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/137_2. Ссылка активна на 08.06.2025 [Limfoma marginal'noi zony. Klinicheskie rekomendatsii. 2023. Available at: https://cr.minzdrav.gov.ru/view-cr/137_2. Accessed: 08.06.2025 (in Russian)].
- Фолликулярная лимфома. Клинические рекомендации. 2024. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/151_2. Ссылка активна на 08.06.2025 [Follikuliarnaia limfoma. Klinicheskie rekomendatsii. 2024. Available at: https://cr.minzdrav.gov.ru/view-cr/151_2. Accessed: 08.06.2025 (in Russian)].
- Лимфома Ходжкина. Клинические рекомендации. 2024. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/139_2. Ссылка активна на 08.06.2025 Limfoma Khodzhkina. Klinicheskie rekomendatsii. 2024. Available at: https://cr.minzdrav.gov.ru/view-cr/139_2. Accessed: 08.06.2025 (in Russian)].
- Агрессивные нефолликулярные лимфомы – диффузная В-клеточная крупноклеточная лимфома, В-клеточная лимфома высокой степени злокачественности с перестройкой генов c-MYC и BCL2/BCL6, первичная медиастинальная В-клеточная лимфома, медиастинальная лимфома серой зоны, лимфома Беркитта, плазмобластная лимфома. Клинические рекомендации. 2024. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/129_3. Ссылка активна на 08.06.2025 [Agressivnye nefollikuliarnye limfomy – diffuznaia V-kletochnaia krupnokletochnaia limfoma, V-kletochnaia limfoma vysokoi stepeni zlokachestvennosti s perestroikoi genov c-MYC i BCL2/BCL6, pervichnaia mediastinal'naia V-kletochnaia limfoma, mediastinal'naia limfoma seroi zony, limfoma Berkitta, plazmoblastnaia limfoma. Klinicheskie rekomendatsii. 2024. Available at: https://cr.minzdrav.gov.ru/view-cr/129_3. Accessed: 08.06.2025 (in Russian)].
- Лимфома из клеток мантии. Клинические рекомендации. 2024. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/136_2. Ссылка активна на 08.06.2025 [Limfoma iz kletok mantii. Klinicheskie rekomendatsii. 2024. Available at: https://cr.minzdrav.gov.ru/view-cr/136_2. Accessed: 08.06.2025 (in Russian)].
- Baskhanova SN, Moskaleva NE, Shestakova KM, et al. Targeted metabolomics for cardiovascular disease: Validation of a high-throughput HPLC-MS/MS assay. J Chromatogr B Analyt Technol Biomed Life Sci. 2025;1264:124732. doi: 10.1016/j.jchromb.2025.124732
- Kim M, Tomek P. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO. Front Immunol. 2021;12:636081. doi: 10.3389/fimmu.2021.636081
- Lu Z, Zhang C, Zhang J, et al. The Kynurenine Pathway and Indole Pathway in Tryptophan Metabolism Influence Tumor Progression. Cancer Med. 2025;14(6):e70703. doi: 10.1002/cam4.70703
- Sordillo PP, Sordillo LA, Helson L. The Kynurenine Pathway: A Primary Resistance Mechanism in Patients with Glioblastoma. Anticancer Res. 2017;37(5):2159-71. doi: 10.21873/anticanres.11551
- Basson C, Serem JC, Hlophe YN, Bipath P. The tryptophan-kynurenine pathway in immunomodulation and cancer metastasis. Cancer Med. 2023;12(18):18691-801. doi: 10.1002/cam4.6484
- León-Letelier RA, Dou R, Vykoukal J, et al. The kynurenine pathway presents multi-faceted metabolic vulnerabilities in cancer. Front Oncol. 2023;13:1256769. doi: 10.3389/fonc.2023.1256769
- Gouasmi R, Ferraro-Peyret C, Nancey S, et al. The Kynurenine Pathway and Cancer: Why Keep It Simple When You Can Make It Complicated. Cancers (Basel). 2022;14(11):2793. doi: 10.3390/cancers14112793
- Sahm F, Oezen I, Opitz CA, et al. The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res. 2013;73(11):3225-34. doi: 10.1158/0008-5472.CAN-12-3831
- Navas LE, Carnero A. NAD(+) metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther. 2021;6(1):2. doi: 10.1038/s41392-020-00354-w
- Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD(+) Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci. 2024;25(4):2092. doi: 10.3390/ijms25042092
- De Santo C, Booth S, Vardon A, et al. The arginine metabolome in acute lymphoblastic leukemia can be targeted by the pegylated-recombinant arginase I BCT-100. Int J Cancer. 2018;142(7):1490-502. doi: 10.1002/ijc.31170
- Delage B, Luong P, Maharaj L, et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis. 2012;3(7):e342. doi: 10.1038/cddis.2012.83
- Ren Y, Fan L, Wang L, et al. SSRP1/SLC3A2 Axis in Arginine Transport: A New Target for Overcoming Immune Evasion and Tumor Progression in Peripheral T-Cell Lymphoma. Adv Sci (Weinh). 2025;12(21):e2415698. doi: 10.1002/advs.202415698
- Puglisi F, Padella A, Parrinello NL, et al. Dissecting the Adaptive Response to Arginine Deprivation in Hodgkin Lymphoma. Blood. 2021;138(Suppl. 1):4497-47. doi: 10.1182/blood-2021-151006
- Chung J, Karkhanis V, Baiocchi RA, Sif S. Protein arginine methyltransferase 5 (PRMT5) promotes survival of lymphoma cells via activation of WNT/β-catenin and AKT/GSK3β proliferative signaling. J Biol Chem. 2019;294(19):7692-710. doi: 10.1074/jbc.RA119.007640
- Sauter C, Simonet J, Guidez F, et al. Protein Arginine Methyltransferases as Therapeutic Targets in Hematological Malignancies. Cancers (Basel). 2022;14(21):5443. doi: 10.3390/cancers14215443
- Yao N, Li W, Xu G, et al. Choline metabolism and its implications in cancer. Front Oncol. 2023;13:1234887. doi: 10.3389/fonc.2023.1234887
- Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11(12):835-48. doi: 10.1038/nrc3162
- Glunde K, Ackerstaff E, Mori N, et al. Choline phospholipid metabolism in cancer: consequences for molecular pharmaceutical interventions. Mol Pharm. 2006;3(5):496-506. doi: 10.1021/mp060067e
- Dobrijević D, Pastor K, Nastić N, et al. Betaine as a Functional Ingredient: Metabolism, Health-Promoting Attributes, Food Sources, Applications and Analysis Methods. Molecules. 2023;28(12):4824. doi: 10.3390/molecules28124824
- Zhou C, Basnet R, Zhen C, et al. Trimethylamine N-oxide promotes the proliferation and migration of hepatocellular carcinoma cell through the MAPK pathway. Discov Oncol. 2024;15(1):346. doi: 10.1007/s12672-024-01178-8
- Xie H, Zhang K, Wei Y, et al. The association of serum betaine concentrations with the risk of new-onset cancers: results from two independent nested case-control studies. Nutr Metab (Lond). 2023;20(1):46. doi: 10.1186/s12986-023-00755-y
- Ninomiya S, Narala N, Huye L, et al. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood. 2015;125(25):3905-16. doi: 10.1182/blood-2015-01-621474
- Zhang N, Huang Y, Wang G, et al. Metabolomics assisted by transcriptomics analysis to reveal metabolic characteristics and potential biomarkers associated with treatment response of neoadjuvant therapy with TCbHP regimen in HER2 + breast cancer. Breast Cancer Res. 2024;26(1):64. doi: 10.1186/s13058-024-01813-w
- Yoneyama T, Abdul-Hadi K, Brown A, et al. A Citrulline-Based Translational Population System Toxicology Model for Gastrointestinal-Related Adverse Events Associated With Anticancer Treatments. CPT Pharmacometrics Syst Pharmacol. 2019;8(12):951-61. doi: 10.1002/psp4.12475
- Zezulová M, Bartoušková M, Hlídková E, et al. Citrulline as a biomarker of gastrointestinal toxicity in patients with rectal carcinoma treated with chemoradiation. Clin Chem Lab Med. 2016;54(2):305-14. doi: 10.1515/cclm-2015-0326
- Mehdizadeh A, Bonyadi M, Darabi M, et al. Common chemotherapeutic agents modulate fatty acid distribution in human hepatocellular carcinoma and colorectal cancer cells. Bioimpacts. 2017;7(1):31-9. doi: 10.15171/bi.2017.05
- Dambrova M, Makrecka-Kuka M, Kuka J, et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev. 2022;74(3):506-51. doi: 10.1124/pharmrev.121.000408
- Nowak C, Hetty S, Salihovic S, et al. Glucose challenge metabolomics implicates medium-chain acylcarnitines in insulin resistance. Sci Rep. 2018;8(1):8691. doi: 10.1038/s41598-018-26701-0
- Davies A, Wenzl FA, Li XS, et al. Short and medium chain acylcarnitines as markers of outcome in diabetic and non-diabetic subjects with acute coronary syndromes. Int J Cardiol. 2023;389:131261. doi: 10.1016/j.ijcard.2023.131261
- Koves TR, Zhang GF, Davidson MT, et al. Pyruvate-supported flux through medium-chain ketothiolase promotes mitochondrial lipid tolerance in cardiac and skeletal muscles. Cell Metab. 2023;35(6): 1038-1056.e8. doi: 10.1016/j.cmet.2023.03.016
- Fiamoncini J, Lima TM, Hirabara SM, et al. Medium-chain dicarboxylic acylcarnitines as markers of n-3 PUFA-induced peroxisomal oxidation of fatty acids. Mol Nutr Food Res. 2015;59(8):1573-83. doi: 10.1002/mnfr.201400743
- Cheng M, Bhujwalla ZM, Glunde K. Abstract 2120: Distinct molecular effects of chemotherapeutic agents on choline phospholipid metabolism of triple-negative breast cancer cells. Cancer Research. 2017;77 (13_Supplement):2120-10. doi: 10.1158/1538-7445.am2017-2120
- Bagnoli M, Granata A, Nicoletti R, et al. Choline Metabolism Alteration: A Focus on Ovarian Cancer. Front Oncol. 2016;6:153. doi: 10.3389/fonc.2016.00153
- Glunde K, Penet MF, Jiang L, et al. Choline metabolism-based molecular diagnosis of cancer: an update. Expert Rev Mol Diagn. 2015;15(6): 735-47. doi: 10.1586/14737159.2015.1039515
- Wang X, Zhang J, Zheng K, et al. Discovering metabolic vulnerability using spatially resolved metabolomics for antitumor small molecule-drug conjugates development as a precise cancer therapy strategy. J Pharm Anal. 2023;13(7):776-87. doi: 10.1016/j.jpha.2023.02.010
- Liu C, Liu D, Wang F, et al. Construction of a novel choline metabolism-related signature to predict prognosis, immune landscape, and chemotherapy response in colon adenocarcinoma. Front Immunol. 2022;13:1038927. doi: 10.3389/fimmu.2022.1038927
- Choe CU, Lezius S, Cordts K, et al. Low homoarginine/SDMA ratio is associated with poor short- and long-term outcome after stroke in two prospective studies. Neurol Sci. 2020;41(1):149-53. doi: 10.1007/s10072-019-04058-0
- Rodionov RN, Beyer-Westendorf J, Bode-Böger SM, et al. Homoarginine and methylarginines independently predict long-term outcome in patients presenting with suspicion of venous thromboembolism. Sci Rep. 2021;11(1):9569. doi: 10.1038/s41598-021-88986-y
Supplementary files

