BCG, muramylpeptides, trained immunity (part I): linkages in the light of the COVID-19 pandemic

Cover Page

Cite item

Full Text

Abstract

It has long been known that Bacillus Calmette–Guérin (BCG) vaccine provides nonspecific protection against many non-mycobacterial infections, which has been discussed in the last decade through the prism of the concept of trained immunity. Within the framework of this concept, a persistent increase in resistance to various pathogens, which occurs after an infectious disease or exposure to certain microbial agents, is associated with epigenetic reprogramming of innate immune cells and their bone marrow progenitors. The COVID-19 pandemic has drawn attention of scientists and practitioners to BCG as an inducer of trained immunity. A number of epidemiological studies have suggested a negative association between the coverage of the population with BCG vaccination and the burden of SARS-CoV-2 infection. A series of independent clinical studies of the effectiveness of this vaccine in non-specific prevention of COVID-19 has been initiated in different countries. Recently, the key role of cytosolic NOD2 receptors in BCG-induced trained immunity has been proven. This actualizes the search for effective immunoactive preparations for prevention of respiratory infections in the pandemic among low molecular weight peptidoglycan fragments of the bacterial cell wall, muramylpeptides (MPs), which are known to be NOD2 agonists. The review highlights the proven and proposed linkages between BCG, MPs, NOD2 and trained immunity in the light of the COVID-19 pandemic. Analysis of the data presented indicates the prospects for preclinical and clinical studies of MPs as potential drugs for nonspecific prevention of SARS-CoV-2 infection and/or other respiratory infections in risk groups during the pandemic. First of all, attention should be paid to glucosaminylmuramyl dipeptide, approved for clinical use in Russia and a number of post-Soviet countries for the complex treatment and prevention of acute and recurrent respiratory infections.

About the authors

O. V. Kalyuzhin

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: kalyuzhin@list.ru
ORCID iD: 0000-0003-3628-2436

д.м.н., проф., проф. каф.

Russian Federation, Moscow

T. M. Andronova

Peptek

Email: kalyuzhin@list.ru
ORCID iD: 0000-0001-6166-8635

к.х.н., президент

Russian Federation, Moscow

A. V. Karaulov

Sechenov First Moscow State Medical University (Sechenov University)

Email: kalyuzhin@list.ru
ORCID iD: 0000-0002-1930-5424

акад. РАН, д.м.н., проф., зав. каф.

Russian Federation, Moscow

References

  1. Shann F. Nonspecific effects of vaccines and the reduction of mortality in children. Clin Ther. 2013;35(2):109-14. doi: 10.1016/j.clinthera.2013.01.007
  2. Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9(5):355-61. doi: 10.1016/j.chom.2011.04.006
  3. Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci USA. 2012;109(43):17537-42. doi: 10.1073/pnas.1202870109
  4. Cirovic B, de Bree LCJ, Groh L, et al. BCG Vaccination in Humans Elicits Trained Immunity via the Hematopoietic Progenitor Compartment. Cell Host Microbe. 2020;28(2):322-34. doi: 10.1016/j.chom.2020.05.014
  5. World Health Organization (WHO). Coronavirus disease 2019 (COVID-19) situation report – 51. 2020. March 11. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10.
  6. Miller A, Reandelar MJ, Fasciglione K, et al. Correlation between universal BCG vaccination policy and reduced mortality for COVID-19. medRxiv. 2020.03.24.20042937. doi: 10.1101/2020.03.24.20042937
  7. Hegarty PK, Sfakianos JP, Giannarini G, et al. COVID-19 and Bacillus Calmette-Guérin: What is the Link? Eur Urol Oncol. 2020;3(3):259-61. doi: 10.1016/j.euo.2020.04.001
  8. O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19? Nat Rev Immunol. 2020;20(6):335-7. doi: 10.1038/s41577-020-0337-y
  9. Reducing Health Care Workers Absenteeism in Covid-19 Pandemic Through BCG Vaccine (BCG-CORONA). https://clinicaltrials.gov/ ct2/show/NCT04328441.
  10. BCG Vaccination to Protect Healthcare Workers Against COVID-19 (BRACE). https://clinicaltrials.gov/ct2/show/NCT04327206.
  11. Windheim M, Lang C, Peggie M, et al. Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem J. 2007;404(Pt 2):179-90. doi: 10.1042/BJ20061704
  12. Meshcheryakova E, Makarov E, Philpott D, et al. Evidence for correlation between the intensities of adjuvant effects and NOD2 activation by monomeric, dimeric and lipophylic derivatives of N-acetylglucosaminyl-N-acetylmuramyl peptides. Vaccine. 2007;25(23):4515-20. doi: 10.1016/j.vaccine.2007.04.006
  13. Dagil YA, Arbatsky NP, Pashenkov MV, et al. The dual NOD1/NOD2 agonism of muropeptides containing a meso-diaminopimelic acid residue. PLoS ONE. 2016;11(8):e0160784. doi: 10.1371/journal.pone.0160784
  14. Пинегин Б.В., Пащенков М.В. Иммуностимуляторы мурамилпептидной природы в лечении и профилактике инфекционно-воспалительных процессов. Иммунология. 2019;40(3):65-71 [Pinegin BV, Pashchenkov MV. Immunostimulators of muramylpeptide nature in the treatment and prevention of infectious-inflammatory processes. Immunologiya. 2019;40(3):65-71 (In Russ.)]. doi: 10.24411/02064952-2019-13007
  15. Luca S, Mihaescu T. History of BCG Vaccine. Maedica (Buchar). 2013;8(1):53-8.
  16. Stensballe LG, Nante E, Jensen IP, et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case-control study. Vaccine. 2005;23(10):1251-7. doi: 10.1016/j.vaccine.2004.09.006
  17. Biering-Sørensen S, Jensen KJ, Monterio I, et al. Rapid Protective Effects of Early BCG on Neonatal Mortality Among Low Birth Weight Boys: Observations From Randomized Trials. J Infect Dis. 2018;217(5):759-66. doi: 10.1093/infdis/jix612
  18. Nemes E, Geldenhuys H, Rozot V, et al. Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. N Engl J Med. 2018;379(2):138-49. doi: 10.1056/NEJMoa1714021
  19. Wardhana, Datau EA, Sultana A, et al. The efficacy of Bacillus Calmette-Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly. Acta Med Indones. 2011;43(3):185-90.
  20. Ohrui T, Nakayama K, Fukushima T, et al. [Prevention of elderly pneumonia by pneumococcal, influenza and BCG vaccinations]. Nihon Ronen Igakkai Zasshi. 2005;42(1):34-6. doi: 10.3143/geriatrics.42.34
  21. Benn CS, Netea MG, Selin LK, Aaby P. A small jab – a big effect: nonspecific immunomodulation by vaccines. Trends Immunol. 2013;34(9):431-9. doi: 10.1016/j.it.2013.04.004
  22. Netea MG, Joosten LA, Latz E, et al. Trained immunity: A program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098. doi: 10.1126/science.aaf1098
  23. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature. 2001;411(6839):826-33. doi: 10.1038/35081161
  24. Kurtz J. Specific memory within innate immune systems. Trends Immunol. 2005;26(4):186-92. doi: 10.1016/j.it.2005.02.001
  25. Netea MG. Training innate immunity: the changing concept of immunological memory in innate host defence. Eur J Clin Invest. 2013;43(8):881-4. doi: 10.1111/eci.12132
  26. Levy O, Netea MG. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines. Pediatr Res. 2014;75:184-8. doi: 10.1038/pr.2013.214
  27. Quintin J, Cheng SC, van der Meer JW, Netea MG. Innate immune memory: towards a better understanding of host defense mechanisms. Curr Opin Immunol. 2014;29C;1-7. doi: 10.1016/j.coi.2014.02.006
  28. Kar UK, Joosten LAB. Training the trainable cells of the immune system and beyond. Nat Immunol. 2020;21:115-9. doi: 10.1038/s41590-019-0583-y
  29. Mitroulis I, Ruppova K, Wang B, et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018;172(1-2):147-61.e12. doi: 10.1016/j.cell.2017.11.034
  30. van der Meer JW, Joosten LA, Riksen N, Netea MG. Trained immunity: A smart way to enhance innate immune defence. Mol Immunol. 2015;68(1):40-4. doi: 10.1016/j.molimm.2015.06.019
  31. Калюжин О.В. Феномен тренированного иммунитета и механизмы действия неспецифических иммуномодуляторов. Рос. аллергол. журн. 2015;12(4):45-51 [Kalyuzhin OV. The trained immunity phenomenon and mechanisms of action of non-specific immunomodifiers. Russian Journal of Allergy. 2015;12(4):45-51 (In Russ.)]. doi: 10.36691/RJA444
  32. Калюжин О.В. Феномен тренированного иммунитета и механизмы действия неспецифических иммуностимуляторов. Аллергология и иммунология. 2016;17(3):186-8 [Kalyuzhin OV. The trained immunity phenomenon and mechanisms of action of non-specific immunostimulants. Allergologiya i immunologiya. 2016;17(3):186-8. (In Russ.)]. http://isir.ru/files/uploaded/AI_2016_N3_161-22023022017.pdf.
  33. Kalyuzhin O. The mechanisms of action of non-specific immunostimulants through the prism of the “trained immunity” concept. In: Sepiashvili R, eds. Allergy, Asthma & Immunophysiology: Innovative Technologies. Bologna: Filodiritto Proceedings; 2016, p. 373-8. https://www.filodiritto.com/proceedings.
  34. Hegarty P, Kamat A, Zafirakis H, Dinardo A. BCG vaccination may be protective against Covid-19. Research Gate. 2020. doi: 10.13140/RG.2.2.35948.10880
  35. Reducing COVID-19 Related Hospital Admission in Elderly by BCG Vaccination. https://clinicaltrials.gov/ct2/show/NCT04417335.
  36. Ten Doesschate T, Moorlag SJCFM, van der Vaart TW, et al. Two Randomized Controlled Trials of Bacillus Calmette-Guérin Vaccination to reduce absenteeism among health care workers and hospital admission by elderly persons during the COVID-19 pandemic: A structured summary of the study protocols for two randomised controlled trials. Trials. 2020;21(1):481. doi: 10.1186/s13063-020-04389-w
  37. WHO. Bacille Calmette-Guérin (BCG) vaccination and COVID-19: Scientific brief. https://www.who.int/publications/i/item/bacille-calmette-guérin-(bcg)-vaccination-and-covid-19.
  38. Gursel M, Gursel I. Is global BCG vaccination-induced trained immunity relevant to the progression of SARS-CoV-2 pandemic? Allergy. 2020;75(7):1815-9. doi: 10.1111/all.14345.
  39. Ozdemir C, Kucuksezer UC, Tamay ZU. Is BCG vaccination affecting the spread and severity of COVID-19? Allergy. 2020;75(7):1824-7. doi: 10.1111/all.14344
  40. Osama El-Gendy A, Saeed H, Ali AMA, et al. Bacillus Calmette-Guérin vaccine, antimalarial, age and gender relation to COVID-19 spread and mortality. Vaccine. 2020;38(35):5564-8. doi: 10.1016/j.vaccine.2020.06.083
  41. Sharma A, Kumar Sharma S, Shi Y, et al. BCG vaccination policy and preventive chloroquine usage: do they have an impact on COVID-19 pandemic? Cell Death Dis. 2020;11(7):516. doi: 10.1038/s41419-020-2720-9
  42. Urashima M, Otani K, Hasegawa Y, Akutsu T. BCG Vaccination and Mortality of COVID-19 across 173 Countries: An Ecological Study. Int J Environ Res Public Health. 2020;17(15):5589. doi: 10.3390/ijerph17155589
  43. Green CM, Fanucchi S, Fok ET, et al. COVID-19: A model correlating BCG vaccination to protection from mortality implicates trained immunity. medRxiv. 2020.04.10.20060905. doi: 10.1101/2020.04.10.20060905
  44. David P, Shoenfeld Y. Bacillus Calmette-Guerin (BCG) as a Protective Factor for COVID-19? Isr Med Assoc J. 2020;8(22):448-9.
  45. O’Connor E, Teh J, Kamat AM, Lawrentschuk N. Bacillus Calmette Guérin (BCG) vaccination use in the fight against COVID-19 – what’s old is new again? Future Oncol. 2020;16(19):1323-5. doi: 10.2217/fon-2020-0381
  46. Riccò M, Gualerzi G, Ranzieri S, Bragazzi NL. Stop playing with data: there is no sound evidence that Bacille Calmette-Guérin may avoid SARS-CoV-2 infection (for now). Acta Biomed. 2020;91(2):207-13. doi: 10.23750/abm.v91i2.9700
  47. Hamiel U, Kozer E, Youngster I. SARS-CoV-2 Rates in BCG-Vaccinated and Unvaccinated Young Adults. JAMA. 2020;323(22):2340-1. doi: 10.1001/jama.2020.8189
  48. Meena J, Yadav A, Kumar J. BCG Vaccination Policy and Protection Against COVID-19. Indian J Pediatr. 2020;87(9):749. doi: 10.1007/s12098-020-03371-3
  49. Search of: BCG/Covid19 – List Results – ClinicalTrials.gov. Accessed September 8, 2020. https://clinicaltrials.gov/ct2/results?cond= Covid19&term=BCG&cntry=&state=&city=&dist=.
  50. Tomita Y, Sato R, Ikeda T, Sakagami T. BCG vaccine may generate cross-reactive T cells against SARS-CoV-2: In silico analyses and a hypothesis. Vaccine. 2020;38(41):6352-6. doi: 10.1016/j.vaccine.2020.08.045
  51. Moorlag SJCFM, Arts RJW, van Crevel R, Netea MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019;25(12):1473-8. doi: 10.1016/j.cmi.2019.04.020
  52. Караулов А.В., Калюжин О.В. Сфера применения мурамилпептидов в рамках основных подходов к иммунотерапии/иммунопрофилактике инфекционных болезней. Физиология и патология иммунной системы. Иммунофармакогеномика. 2013;17(5):3-15 [Karaulov AV, Kalyuzhin OV. Sphere of muramyl dipeptide application within the major approaches to immunotherapy/prophylaxis of infectious diseases. Fiziologiya i patologiya immunnoj sistemy. Immunofarmakogenomika. 2013;17(5):3-15 (In Russ.)].
  53. Караулов А.В., Калюжин О.В. Иммунотерапия инфекционных болезней: проблемы и перспективы. Терапевтический архив. 2013; 85(11):100-8 [Karaulov AV, Kalyuzhin OV. Immunotherapy for infectious diseases: challenges and prospects. Therapeutic Archive. 2013;85(11):100-8 (In Russ.)].
  54. Буркин А.В., Свистушкин В.М., Никифорова Г.Н., Духанин А.С. Глюкозаминилмурамилдипептид в терапии инфекционных заболеваний респираторного тракта. Вестн. оториноларингологии. 2019;84(6):118-31 [Burkin AV, Svistushkin VM, Nikiforova GN, Dukhanin AS. Glucosaminylmuramyl dipeptide in treatment of respiratory tract diseases. Vestn. Otorinolaringolii. 2019;84(6):118-31 (In Russ.)]. doi: 10.17116/otorino201984061118

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».