4D flow MRI: value and clinical perspectives in patients with pathology of the heart and great vessels. A review

封面

如何引用文章

全文:

详细

The study of blood flow is becoming a new trend in cardiology and cardiovascular surgery. Based on the literature and our own data, a review is presented on the use of 4D flow in diseases of the heart and blood vessels. The main state of the question about the features of the application of the technique in various pathologies of the cardiovascular system is described in detail, the priorities, limitations and promising directions of the technique application are considered taking into account the goals of practical medicine. The review consists of two parts. The first is devoted to general issues, limitations of the technique, and issues of 4D flow mapping in patients with lesions of the great vessels. In the second part, the emphasis is on the use of 4D flow magnetic resonance imaging in the study of intraventricular blood flow and the application of the technique in congenital heart and vascular diseases.

作者简介

Lyudmila Yurpolskaya

Bakoulev National Medical Research Center for Cardiovascular Surgery

编辑信件的主要联系方式.
Email: layurpolskaya@bakulev.ru
ORCID iD: 0000-0001-7780-2405

д-р мед. наук, вед. науч. сотр. рентген-диагностического отд.

俄罗斯联邦, Moscow

参考

  1. Takehara Y. 4D Flow when and how? Radiol Med. 2020;125(9):838-50. doi: 10.1007/s11547-020-01249-0
  2. Itatani K, Sekine T, Yamagishi M, et al. Hemodynamic Parameters for Cardiovascular System in 4D Flow MRI: Mathematical Definition and Clinical Applications. Magn Res Med Sci. 2022;21(2):380-99. doi: 10.2463/mrms.rev.2021-0097
  3. Catapano F, Pambianchi G, Cundari G, et al. 4D flow imaging of the thoracic aorta: is there an added clinical value? Cardiovasc Diagn Ther. 2020;10(4):1068-89. doi: 10.21037/cdt-20-452
  4. Oyama-Manabe N, Aikawа T, Tsuneta S, Manabe O. Clinical Applications of 4D Flow MR Imaging in Aortic Valvular and Congenital Heart Disease. Magn Reson Med Sci. 2022;21:319-26. doi: 10.2463/mrms.rev.2021-0030
  5. Zhuang B, Sirajuddin A, Zhao S, Lu M. The role of 4D flow MRI for clinical applications in cardiovascular disease: current status and future perspectives. Quant Imaging Med Surg. 2021;11(9):4193-210. DOI:10.21037/ qims-20-1234
  6. Takahashi K, Sekine T, Ando T, et al. Utility of 4D Flow MRI in Thoracic Aortic Diseases: A Literature Review of Clinical Applications and Current Evidence. Magn Res Med Sci. 2022;21;327-39. doi: 10.2463/mrms. rev.2021-0046
  7. Harloff A, Mirzaee H, Lodemann T, et al. Determination of aortic stiffness using 4D flow cardiovascular magnetic resonance – a population-based study. J Cardiovasc Magn Res. 2018;20(1):43. doi: 10.1186/s12968-018-0461-z
  8. Scott MB, Huh H, van Ooij P, et al. Impact of age, sex, and global function on normal aortic hemodynamics. Magn Reson Med. 2020;84(4):2088-102. doi: 10.1002/mrm.28250
  9. Takehara Y, Isoda H, Takahashi M, et al. Abnormal Flow Dynamics Result in Low Wall Shear Stress and High Oscillatory Shear Index in Abdominal Aortic Dilatation: Initial in vivo Assessment with 4D-flow MRI. Magn Reson Med Sci. 2020;19:235-46. doi: 10.2463/mrms.mp. 2019-0188
  10. Condemi F, Campisi S, Viallon M, et al. Relationship Between Ascending Thoracic Aortic Aneurysms Hemodynamics and Biomechanical Properties. IEEE Trans Biomed Eng. 2020;67:949-56. doi: 10.1109/TBME.2019. 2924955
  11. Garcia J, Barker AJ, Markl M. The Role of Imaging of Flow Patterns by 4D flow MRI in Aortic Stenosis. JACC Cardiovasc Imaging. 2019;12:252-66. doi: 10.1016/j.jcmg.2018.10.034
  12. Demirkiran Ah, van Ooij P, Westenberg JJM, et al. Clinical intra-cardiac 4D flow CMR: acquisition, analysis, and clinical applications. Еur Heart J Cardiovasc Imag. 2022;23:154-65. doi: 10.1093/ehjci/ jeab112
  13. Blanken CPS, Farag ES, Boekholdt SM, et al. Advanced cardiac MRI techniques for evaluation of left-sided valvular heart disease. J Magn Reson Imaging. 2018;48:318-29. doi: 10.1002/jmri. 26204
  14. Youssefi P, Sharma R, Figueroa CA, Jahangiri M. Functional assessment of thoracic aortic aneurysms – the future of risk prediction? Br Med Bull. 2017;121:61-71. doi: 10.1093/bmb/ldw049
  15. Dux-Santoy L, Guala A, Teixido-Tura G, et al. Increased rotational flow in the proximal aortic arch is associated with its dilation in bicuspid aortic valve disease. Eur Heart J Cardiovasc Imaging. 2019;20:1407-17. doi: 10.1093/ehjci/jez046
  16. Rodríguez-Palomares JF, Dux-Santoy L, Guala A, et al. Aortic flow patterns and wall shear stress maps by 4D-flow flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. J Cardiovasc Magn Reson. 2018;20:28. doi: 10.1186/s12968-018-0451-1
  17. Ridley CH, Vallabhajosyula P, Bavaria JE, et al. The Sievers Classification of the Bicuspid Aortic Valve for the Perioperative Echocardiographer: The Importance of Valve Phenotype for Aortic Valve Repair in the Era of the Functional Aortic Annulus. J Cardiothorac Vasc Anesth. 2016;30:1142-51. DOI:10.1053/j. jvca.2016.02.009
  18. Hattori K, Nakama N, Takada J, et al. Bicuspid aortic valve morphology and aortic valvular outflow jets: an experimental analysis using an MRI-compatible pulsatile flow circulation system. Sci Rep. 2021;11(1):2066. doi: 10.1038/s41598-021-81845-w
  19. Komoriyama H, Tsuneta S, Oyama-Manabe N, et al. Four-dimensional flow magnetic resonance imaging visualizes sig-nificant changes in flow pattern and wall shear stress in the ascending aorta after transcatheter aortic valve implantationin a patient with severe aortic stenosis. Eur Heart J Cardiovasc Imaging. 2020;21(1):21. doi: 10.1093/ehjci/jez192
  20. Odagiri K, Inui N, Hakamata A, et al. Non-invasive evaluation of pulmonary arterial blood flow and wall shear stress in pulmonary arterial hypertension with 3D phase contrast magnetic resonance imaging. Springerplus. 2016;5(1):1071. doi: 10.1186/s40064-016-2755-7
  21. Cerne JW, Pathrose A, Gordon DZ, et al. Evaluation of Pulmonary Hypertension Using 4D Flow MRI. J Magn Reson Imaging. 2022;56(1):234-45. doi: 10.1002/jmri.27967
  22. Reiter U, Kovacs G, Reiter C, et al. MR 4D flow-based mean pulmonary arterial pressure tracking in pulmonary hypertension. Eur Radiol. 2021;31:1883-93. doi: 10.1007/s00330-020-07287-6
  23. Reiter G, Reiter U, Kovacs G, et al. Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension. Radiology. 2015;275:71-9. doi: 10.1148/radiol. 14140849
  24. Шляппо М.А., Глазкова Е.Ю., Александрова С.А., и др. Методика 4D-flow магнитно-резонансной томографии в оценке кровотока в коронарном синусе. Клиническая физиология кровообращения. 2019;16(1):30-5 [Shlyappo MA, Glazkova EYu, Aleksandrova SA, et al. Assessment of blood flow in the coronary sinus by the method of MR 4D-flow. Clinical Physiology of Circulation. 2019;16(1):30-5 (in Russian)]. doi: 10.24022/1814-6910-2019-16-1-30-35
  25. Wiesemann St, Schmitter S, Demir A, et al. Impact of sequence type and field strength (1.5, 3, and 7T) on 4D flow MRI hemodynamic aortic parameters in healthy volunteers. Magn Reson Med. 2021;5(2):721-33. doi: 10.1002/mrm.28450
  26. Corrias G, Cocco D, Suri JS, et al. Heart applications of 4D flow. Cardiovasc Diagn Ther. 2020;10(4):1140-9. doi: 10.21037/cdt.2020.02.08
  27. Nakaza M, Matsumoto M, Sekine T, et al. Dual-VENC 4Dflow MRI can detect abnormal blood flow in the left atrium that potentially causes thrombosis formation after left upper lobectomy. Magn Reson Med Sci. 2021;21(3):433-43. doi: 10.2463/mrms.mp.2020-0170
  28. Doyle CM, Orr J, Greenwood JP, et al. Four-Dimensional Flow Magnetic Resonance Imaging in the Assessment of Blood Flow in the Heart and Great Vessels: A Systematic Review. J Magn Reson Imaging. 2022;55(5):1301-21. doi: 10.1002/jmri.27874

补充文件

附件文件
动作
1. JATS XML

版权所有 © Consilium Medicum, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-相同方式共享 4.0国际许可协议的许可。
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».