Explosive emission processes in thermonuclear facilities with magnetic plasma confinement and in linear electron–positron colliders
- Authors: Barengol'ts S.A.1,2,3, Mesyats G.A.2
-
Affiliations:
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences
- Institute of Electrophysics, Ural Branch, Russian Academy of Sciences
- Issue: Vol 193, No 7 (2023)
- Pages: 751-769
- Section: Instruments and methods of investigation
- URL: https://journal-vniispk.ru/0042-1294/article/view/256605
- DOI: https://doi.org/10.3367/UFNr.2022.02.039163
- ID: 256605
Cite item
Full Text
Abstract
A model of the phenomenon of explosive electron emission based on its similarity to the electrical explosion of conductors is presented. With this model, the microexplosive processes occurring on a cathode surface due to the action of the explosive emission current have been simulated. The simulation results have been used to analyze explosive emission processes caused by the operation of unipolar arcs in thermonuclear reactors with magnetic plasma confinement and by the initiation of radiofrequency vacuum breakdowns in the accelerating structures of linear electron–positron colliders. The structure of the arc discharge cathode spot and the erosion characteristics have been investigated for nanostructured tungsten (W-fuzz) surfaces formed in thermonuclear reactors with magnetic plasma confinement. For radiofrequency vacuum breakdowns, the initiating parameters have been estimated, and prebreakdown and microexplosive processes have been simulated.
About the authors
Sergei Aleksandrovich Barengol'ts
Prokhorov General Physics Institute of the Russian Academy of Sciences; P. N. Lebedev Physical Institute of the Russian Academy of Sciences; Institute of Electrophysics, Ural Branch, Russian Academy of Sciences
Email: sb@nsc.gpi.ru
Doctor of physico-mathematical sciences
Gennadii Andreevich Mesyats
P. N. Lebedev Physical Institute of the Russian Academy of Sciences
Email: mesyacga@lebedev.ru
Doctor of technical sciences
References
- Mesyats G. A., J. Nucl. Mater., 128–129 (1984), 618
- Mesyats G. A., High Power Microwave Generation and Applications: Proc. of the Course and Workshop (Varenna, Italy, 9-17 September, 1991), D. Akulina, E. Sindoni, C. Wharton, Publ. for the Società Italiana di Fisica by Editrice Compositori, Bologna, Italy, 1992, 345
- Месяц Г. А., Исследования по генерированию наносекундных импульсов большой мощности, Дисс. … докт. техн. наук, Томский политехн. ин-т, Томск, 1966
- Бугаев С. П. и др., УФН, 115 (1975), 101
- Литвинов Е. А., Месяц Г. А., Проскуровский Д. И., УФН, 139 (1983), 265
- Mesyats G. A., Proskurovsky D. I., Pulsed Electrical Discharge in Vacuum, Springer, Berlin, 1989
- Mesyats G. A., Pulsed Power, Springer Science and Business Media, Berlin, 2007
- Месяц Г. А., Эктоны в вакуумном разряде: пробой, искра, дуга, Наука, М., 2000
- Карцев Г. К. и др., ДАН СССР, 192 (1970), 309
- Mitterauer J. et al., Proc. VII Intern. Symp. on Discharges and Electrical Insulation in Vacuum, USSR, Novosibirsk, 1976, 83
- Fursey G. N., IEEE Trans. Electr. Insul., 4 (1985), 659
- Anderson G. W., Neilson F. W., Exploding Wires, W. G. Chace, H. K. Moore, Plenum Press, New York, 1962
- Oreshkin V. I., Baksht R. B., IEEE Trans. Plasma Sci., 48 (2020), 1214
- Mesyats G. A., IEEE Trans. Plasma Sci., 23 (1995), 879
- Месяц Г. А., УФН, 165 (1995), 601
- Mesyats G. A., IEEE Trans. Plasma Sci., 41 (2013), 676
- Shmelev D. L., Barengolts S. A., IEEE Trans. Plasma Sci., 41 (2013), 1959
- Barengolts S. A., Shmelev D. L., Uimanov I. V., IEEE Trans. Plasma Sci., 43 (2015), 2236
- Barengolts S. A. et al., J. Appl. Phys., 129 (2021), 133301
- Кесаев И. Г., Катодные процессы электрической дуги, Наука, М., 1968
- Баренгольц С. А., Месяц Г. А., Шмелев Д. Л., ЖЭТФ, 120 (2001), 1227
- Месяц Г. А., Баренгольц С. А., УФН, 172 (2002), 1113
- Oreshkin V. I. et al., Phys. Plasmas, 11 (2004), 4771
- Oreshkin V. I. et al., Phys. Plasmas, 23 (2016), 122107
- Сливков И. Н., Электроизоляция и разряд в вакууме, Атомиздат, М., 1972
- Barengolts S. A. et al., Phys. Rev. Accel. Beams, 21 (2018), 061004
- Barengolts S. A. et al., IEEE Trans. Plasma Sci., 47 (2019), 3406
- Ткаченко С. И. и др., Теплофизика высоких температур, 39 (2001), 728
- Khishchenko K. V. et al., Int. J. Thermophys., 23 (2002), 1359
- Лоскутов В. В., Лучинский А. В., Месяц Г. А., ДАН СССР, 271 (1983), 1120
- Бушман А. В. и др., ДАН СССР, 312 (1990), 1368
- Shmelev D. L., Litvinov E. A., IEEE Trans. Plasma Sci., 25 (1997), 533
- Shmelev D. L., Litvinov E. A., IEEE Trans. Dielectr. Electr. Insul., 6 (1999), 441
- Oreshkin E. V. et al., 7th Intern. Congress on Energy Fluxes and Radiation Effects, EFRE 2020 (September 14-26, 2020, Tomsk, Russia), Publ. House of IAO SB RAS, Tomsk, 2020, 408
- Орешкин В. И., Баренгольц С. А., Чайковский С. А., ЖТФ, 77:5 (2007), 108
- Robson A. E., Thonemann P. C., Proc. Phys. Soc., 73 (1959), 508
- Зыкова Н. М., Недоспасов А. В., Петров В. Г., Теплофизика высоких, 21 (1983), 778
- Tien J. K. et al., J. Nucl. Mater., 76–77 (1978), 481
- Schwirzke F., Taylor R. J., J. Nucl. Mater., 93–94 (1980), 780
- Höthker K. et al., J. Nucl. Mater., 93–94 (1980), 785
- Stampa A., Kruger H., J. Phys. D, 16 (1983), 2135
- Schwirzke F. R., IEEE Trans. Plasma Sci., 19 (1991), 690
- Loarte A. et al., Nucl. Fusion, 47 (2007), S203
- Federici G. et al., Nucl. Fusion, 41 (2001), 1967
- Roth J. et al., Plasma Phys. Control. Fusion, 50 (2008), 103001
- Rohde V. et al., J. Nucl. Mater., 415 (2011), S46
- Rohde V. et al., J. Nucl. Mater., 438 (2013), S800
- Rohde V., Balden M., the ASDEX Upgrade Team, Nucl. Mater. Energy, 9 (2016), 36
- Tokitani M. et al., Nucl. Fusion, 51 (2011), 102001
- Rudakov D. L. et al., J. Nucl. Mater., 438 (2013), S805
- Rudakov D. L. et al., Phys. Scr., 2016 (2016), 014055
- Bykov I. et al., Phys. Scr., 2017 (2017), 014034
- Kajita S. et al., Nucl. Fusion, 53 (2013), 053013
- Savrukhin P. V., Shestakov E. A., Phys. Plasmas, 26 (2019), 092505
- Dhard C. P. et al., Phys. Scr., 2020:T171 (2020), 014033
- Баренгольц С. А., Месяц Г. А., Цвентух М. М., ЖЭТФ, 134 (2008), 1213
- Federici G., Loarte A., Strohmayer G., Plasma Phys. Control. Fusion, 45 (2003), 1523
- Doyle E. J. et al., Nucl. Fusion, 47 (2007), S18
- Takamura S. et al., Plasma Fusion Res., 1 (2006), 051
- Baldwin M. J., Doerner R. P., Nucl. Fusion, 48 (2008), 035001
- Kajita S. et al., Nucl. Fusion, 49 (2009), 095005
- Pitts R. A. et al., J. Nucl. Mater., 438 (2013), S48
- De Temmerman G., Hirai T., Pitts R. A., Plasma Phys. Control. Fusion, 60 (2018), 044018
- Kajita S., Takamura S., Ohno N., Nucl. Fusion, 49 (2009), 032002
- Kajita S. et al., Phys. Lett. A, 373 (2009), 4273
- Kajita S. et al., Plasma Phys. Control. Fusion, 54 (2012), 035009
- Hwangbo D. et al., IEEE Trans. Plasma Sci., 47 (2019), 3617
- Hwangbo D. et al., Contrib. Plasma Phys., 58 (2018), 608
- Hwangbo D. et al., Nucl. Mater. Energy, 12 (2017), 386
- Hwangbo D. et al., Results Phys., 4 (2014), 33
- Kajita S. et al., J. Appl. Phys., 116 (2014), 233302
- Barengolts S. A. et al., IEEE Trans. Plasma Sci., 46 (2018), 4044
- Aussems D. U. B. et al., J. Appl. Phys., 116 (2014), 063301
- Hwangbo D. et al., Jpn. J. Appl. Phys., 52 (2013), 11NC02
- Hwangbo D. et al., Plasma Sources Sci. Technol., 29 (2020), 125015
- Barengolts S. A. et al., Nucl. Fusion, 60 (2020), 044001
- Hwangbo D. et al., IEEE Trans. Plasma Sci., 45 (2017), 2080
- Barengolts S. A., Mesyats G. A., Tsventoukh M. M., IEEE Trans. Plasma Sci., 39 (2011), 1900
- Nishijima D. et al., J. Nucl. Mater., 415 (2011), S96
- Kajita S. et al., Results Phys., 6 (2016), 877
- Barengolts S. A., Mesyats G. A., Tsventoukh M. M., Nucl. Fusion, 50 (2010), 125004
- Зиновьев В. Е., Теплофизические свойства металлов при высоких температурах, Справочник, Металлургия, М., 1989
- Kimblin C. W., J. Appl. Phys., 44 (1973), 3074
- Anders A. et al., IEEE Trans. Plasma Sci., 33 (2005), 1532
- Зельдович Я. Б., Райзер Ю. П., Физика ударных волн и высокотемпературных гидродинамических явлений, Наука, М., 1966
- Anders A., Phys. Rev. E, 55 (1997), 969
- Anders A. et al., Plasma Sources Sci. Technol., 12 (1992), 63
- Онуфриев С. В., Теплофизика высоких температур, 49 (2011), 213
- Smirnov R. D. et al., Phys. Plasmas, 22 (2015), 012506
- De Temmerman G., Doerner R. P., Pitts R. A., Nucl. Mater. Energy, 19 (2019), 255
- Agee F. J., IEEE Trans. Plasma Sci., 26 (1998), 235
- Guignard G. (Ed.), CERN 2000-008, CERN, Geneva, 2000
- Aicheler M. et al. (Eds.), CLIC Conceptual Design Report CERN 2012-007, CERN, Geneva, 2012
- Wuensch W., CERN-OPEN-2014-028, CLIC-Note-1025, CERN, Geneva, 2013
- Wu X. et al., Phys. Rev. Accel. Beams, 20 (2017), 052001
- Wuensch W. et al., Phys. Rev. Accel. Beams, 20 (2017), 011007
- Degiovanni A., Wuensch W., Giner Navarro J., Phys. Rev. Accel. Beams, 19 (2016), 032001
- Grudiev A., Calatroni S., Wuensch W., Phys. Rev. ST Accel. Beams, 12 (2009), 102001
- Descoeudres A. et al., Phys. Rev. ST Accel. Beams, 12 (2009), 092001
- Barbour J. P. et al., Phys. Rev., 92 (1953), 45
- Barengolts S. A., Kreindel M. Y., Litvinov E. A., IEEE Trans. Plasma Sci., 26 (1998), 252
- Sokolovski D., Baskin L. M., Phys. Rev. A, 36 (1987), 4604
- Wang J. W., Loew G. A., Frontiers of Accelerator Technology. Proc. of the Joint US-CERN-Japan Intern. School (Hayama/Tsukuba, Japan, 9-18 September 1996), S. I. Kurokawa, M. Month, S. Turner, World Scientific, Singapore, 1999, 768
- Barengolts S. A., Uimanov I. V., Shmelev D. L., IEEE Trans. Plasma Sci., 47 (2019), 3400
- Uimanov I. V., Shmelev D. L., Barengolts S. A., J. Phys. D, 54 (2020), 065205
- Miller S. С. (Jr.), Good R. H. (Jr.), Phys. Rev., 91 (1953), 174
- Murphy E. L., Good R. H. (Jr.), Phys. Rev., 102 (1956), 1464
- Анисимов С. И., Имас Я. А., Романов Г. С., Ходыко Ю. В., Действие излучения большой мощности на металлы, Под ред. А М Бонч-Бруевича, М. А. Ельяшевича, Наука, М., 1970
- Nordlund K., Djurabekova F., Phys. Rev. ST Accel. Beams, 15 (2012), 071002
- Pritzkau D. P., Siemann R. H., Phys. Rev. ST Accel. Beams, 5 (2002), 112002
- Simakov E. I., Dolgashev V. A., Tantawi S. G., Nucl. Instrum. Meth. Phys. Res. A, 907 (2018), 221
- Barengolts S. A. et al., IEEE Trans. Plasma Sci., 49 (2021), 2470
Supplementary files
