The α-Tocopherol Status in American Mink (Neogale vison) Selected for Behavior

Cover Page

Cite item

Full Text

Abstract

One of the reasons for the physiological and biochemical changes in the body of animals that occur as a result of selection for a defensive reaction toward humans is the activity of the hypothalamic-pituitary-adrenal system. An aggressive response, raising the level of stress in the body, contributes to the disruption of redox balance. However, data on the content of the main natural antioxidant vitamin E in mammals undergoing selection for behavior are limited. This study was designed to determine the content of a-tocopherol in American mink selected to eliminate (“domestic” or tame) or promote (aggressive) defensive reactions toward humans for 22–23 generations. We studied 4 groups (n = 10 in each) of 11-month-old male standard dark brown mink with varying degrees of aggressive (groups –2, –3) or tame (groups +3, +6) behavior. The content of a-tocopherol in the blood serum, liver, kidneys, heart, skeletal muscle, spleen was determined by HPLC. Aggressive mink have lower levels of a-tocopherol in the blood serum and liver, which reflect the vitamin E content in the body. In most cases, differences were found between mink of the most aggressive and the most “domestic” groups. These results can be associated with features of the neuroendocrine system responsible for aggressive behavior, which affect the processes of metabolism and depletion of a-tocopherol in the body.

About the authors

I. V. Baishnikova

Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: iravbai@mail.ru
Russian Federation, Petrozavodsk

O. V. Trapezov

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: iravbai@mail.ru
Russian Federation, Novosibirsk; Novosibirsk

S. N. Kalinina

Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences

Email: iravbai@mail.ru
Russian Federation, Petrozavodsk

I. A. Zaitseva

Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences

Email: iravbai@mail.ru
Russian Federation, Petrozavodsk

M. A. Nekrasova

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Email: iravbai@mail.ru
Russian Federation, Novosibirsk

M. A. Stepanova

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Agrarian University

Email: iravbai@mail.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Александрович Ю.В., Антонов Е.В., Шихевич С.Г. и др. Профиль экспрессии генов, связанных с регуляцией стресса, поведения и нейрогенеза, вдоль дорзовентральной оси в гиппокампе у взрослых ручных и агрессивных лисиц // Вавиловский журн. генетики и селекции. 2023. Т. 27. С. 651–661.
  2. Гербек Ю.Э., Амелькина О.А., Коношенко М.Ю. и др. Влияние неонатального хэндлинга на поведение и стресс-ответ у крыс, селекционируемых по реакции на человека // Вавиловский журн. генетики и селекции. 2016. Т. 20. С. 145–154.
  3. Калинина С.Н., Илюха В.А., Трапезов О.В. и др. Активность пищеварительных ферментов у американских норок (Neovison vison) при отборе на агрессивное и ручное поведение // Журн. эвол. биохим. физиол. 2022. Т. 58 (1). С. 61–68.
  4. Овчинников В.Ю., Антонов Е.В., Васильев Г.В. и др. Исследование экспрессии генов рецептора глюкокортикоидов и микроРНК в гиппокампе и концентрации кортизола в крови у лисиц, селекционируемых по реакции на человека // Вавиловский журн. генетики и селекции. 2018. Т. 22 (2). С. 230–234.
  5. Оськина И.Н., Гербек Ю.Э., Шихевич С.Г. и др. Изменения гипоталамо-гипофизарно-надпочечниковой и иммунной систем при отборе на доместикационное поведение // Вестник ВОГиС. 2008. Т. 12 (1/2). С. 39–49.
  6. Попова Н.К. Доместикация и мозг: сорок лет спустя // Вавиловский журн. генетики и селекции. 2017. Т. 21 (4). С. 414–420.
  7. Трапезов О.В. Гомологические ряды изменчивости окраски меха у американской норки (Mustela vison Schreber, 1777) в условиях доместикации // Вестник ВОГиС. 2007. Т. 11 (3/4). С. 547–560.
  8. Трут Л.Н., Харламова А.В., Пилипенко А.С. и др. Эксперимент по доместикации лисиц и эволюция собак с позиции современных молекулярно-генетических и археологических данных // Генетика. 2021. Т. 57 (7). С. 767–785.
  9. Чепур С.В., Плужников Н.Н., Сайганов С.А. и др. Механизмы реализации антиоксидантных эффектов альфа-токоферола // Успехи соврем. биол. 2020. Т. 140 (2). С. 149–165.
  10. Albert F.W., Shchepina O., Winter C. et al. Phenotypic differences in behavior, physiology and neurochemistry between rats selected for tameness and for defensive aggression towards humans // Horm. Behav. 2008. V. 53 (3). P. 413–421.
  11. Ambrogini P., Betti M., Galati C. et al. a-Tocopherol and hippocampal neural plasticity in physiological and pathological conditions // Int. J. Mol. Sci. 2016. V. 17 (12). P. 2107.
  12. Atkinson J., Thakur V., Manor D. The tocopherol transfer protein: regulator of vitamin E status // Vitamin E in human health / Eds P. Weber, M. Birringer, J.B. Blumberg et al. Switzerland: Humana Press, 2019. P. 111–124.
  13. Belyaev D.K. Destabilizing selection as a factor in domestication // J. Hered. 1979. V. 70 (5). P. 301–308.
  14. Borel P., Desmarchelier C. Genetic variations involved in vitamin E status // Int. J. Mol. Sci. 2016. V. 17 (12). P. 2094.
  15. Bromek E., Daniel W.A. The regulation of liver cytochrome P450 expression and activity by the brain serotonergic system in different experimental models // Expert Opin. J. Drug Metab. Toxicol. 2021. V. 17 (4). P. 413–424.
  16. Caro P., Gomez J., Sanz A. et al. Effect of graded corticosterone treatment on aging-related markers of oxidative stress in rat liver mitochondria // Biogerontology. 2007. V. 8 (1). P. 1–11.
  17. Costantini D., Carere C., Caramaschi D., Koolhaas J.M. Aggressive and nonaggressive personalities differ in oxidative status in selected lines of mice (Mus musculus) // Biol. Lett. 2008. V. 4 (1). P. 119–122.
  18. Costantini D., Marasco V., Møller A.P. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates // J. Comp. Physiol. B. 2011. V. 181 (4). P. 447–456.
  19. Cuddihy S.L., Ali S.S., Musiek E.S. et al. Prolonged a-tocopherol deficiency decreases oxidative stress and unmasks a-tocopherol-dependent regulation of mitochondrial function in the brain // J. Biol. Chem. 2008. V. 283 (11). P. 6915–6924.
  20. Gibson G.G., Plant N.J., Swales K. et al. Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man // Xenobiotica. 2002. V. 32 (3). P. 165–206.
  21. Gulevich R.G., Oskina I.N., Kharlamova A.V., Trapezov O.V. Cortisol and transcortin levels in minks (Mustela vision) selected for the type of behavior and subjected to the long-term pair co-housing // J. Evol. Biochem. Physiol. 2000, V. 36. P. 531–536.
  22. Harfmann B.D., Schroder E.A., Esser K.A. Circadian rhythms, the molecular clock, and skeletal muscle // J. Biol. Rhythms. 2015. V. 30 (2). P. 84–94.
  23. Hekman J.P., Johnson J.L., Edwards W. et al. Anterior pituitary transcriptome suggests differences in ACTH release in tame and aggressive foxes // G3 Genes Genom. Genet. 2018. V. 8 (3). P. 859–873.
  24. Hira S., Saleem U., Anwar F., Ahmad B. Antioxidants attenuate isolation- and L-DOPA-induced aggression in mice // Front. Pharmacol. 2018. V. 8. P. 945.
  25. Huang S., Slomianka L., Farmer A.J. et al. Selection for tameness, a key behavioral trait of domestication, increases adult hippocampal neurogenesis in foxes // Hippocampus. 2015. V. 25 (8). P. 963–975.
  26. Isaksson C., While G., McEvoy J. et al. Aggression, but not testosterone, is associated to oxidative status in a free-living vertebrate // Behaviour. 2011. V. 148 (5–6). P. 713–731.
  27. Kizhina A.G., Uzenbaeva L.B., Ilyukha V.A. et al. Selection for behavior and hemopoiesis in American mink (Neovison vison) // J. Vet. Behav. 2017. V. 17. P. 38–43.
  28. Klochkov D.V., Alekhina T.A., Trapezov O.V., Petrenko O.I. Estrous cycle, folliculogenesis, and brain catecholamines after stimulation of the sexual system by choriogonadotropin in female minks selected for behavior // J. Evol. Biochem. Physiol. 2005. V. 41 (3). P. 333–340.
  29. Korhonen H.T., Jauhiainen L., Rekilä T. Effect of temperament and behavioural reactions to the presence of a human during the pre-mating period on reproductive performance in farmed mink (Mustela vison) // Can. J. Anim. Sci. 2002. V. 82 (3). P. 275–282.
  30. Kulikov A.V., Bazhenova E.Y., Kulikova E.A. et al. Interplay between aggression, brain monoamines and fur color mutation in the American mink // Gen. Brain Behav. 2016. V. 15 (8). P. 733–740.
  31. Lewis E.D., Meydani S.N., Wu D. Regulatory role of vitamin E in the immune system and inflammation // IUBMB Life. 2019. V. 71 (4). P. 487–494.
  32. Machlin L.J., Gabriel E. Kinetics of tissue α-tocopherol uptake and depletion following administration of high levels of vitamin E // Ann. N. Y. Acad. Sci. 1982. V. 393. P. 48–60.
  33. Majer A.D., Fasanello V.J., Tindle K. et al. Is there an oxidative cost of acute stress? Characterization, implication of glucocorticoids and modulation by prior stress experience // Proc. R. Soc. L. Ser. B. Biol. Sci. 2019. V. 286. P. 20191698.
  34. Malmkvist J., Hansen S.W., Damgaard B.M. Effect of the serotonin agonist buspirone on behaviour and hypothalamic–pituitary–adrenal axis in confident and fearful mink // Physiol. Behav. 2003. V. 78 (2). P. 229–240.
  35. Mentesana L., Adreani N.M. Acute aggressive behavior perturbates the oxidative status of a wild bird independently of testosterone and progesterone // Horm. Behav. 2021. V. 128. P. 104913.
  36. Mir N., Chin S.A., Riddell M.C., Beaudry J.L. Genomic and non-genomic actions of glucocorticoids on adipose tissue lipid metabolism // Int. J. Mol. Sci. 2021. V. 22 (16). P. 8503.
  37. Panova E., Kalinina S., Ilyukha V. et al. Serum levels of cortisol and testosterone in American mink (Neogale vison) selected for aggressive and tame behavior towards humans // J. Evol. Biochem. Physiol. 2024, V. 60 (4). P. 1428–1436.
  38. Plyusnina I., Oskina I. Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans // Physiol. Behav. 1997. V. 61 (3). P. 381–385.
  39. Rammal H., Bouayed J., Soulimani R. A direct relationship between aggressive behavior in the resident/intruder test and cell oxidative status in adult male mice // Eur. J. Pharmacol. 2010. V. 627 (1–3). P. 173–176.
  40. Romero L.M., Reed J.M. Collecting baseline corticosterone samples in the field: is under 3 min good enough? // Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2005. V. 140 (1). P. 73–79.
  41. Rosado B., Garcia-Belenguer S., León M. et al. Effect of fluoxetine on blood concentrations of serotonin, cortisol and dehydroepiandrosterone in canine aggression // J. Vet. Pharmacol. Ther. 2011. V. 34 (5). P. 430–436.
  42. Rosenfeld C.S., Hekman J.P., Johnson J.L. et al. Hypothalamic transcriptome of tame and aggressive silver foxes (Vulpes vulpes) identifies gene expression differences shared across brain regions // Gen. Brain Behav. 2020. V. 19 (1). P. e12614.
  43. Schmölz L., Schubert M., Kluge S. et al. The hepatic fate of vitamin E // Vitamin E in health and disease / Ed. J.A. Morales-Gonzalez. InTech, 2018. https://doi.org/10.5772/intechopen.79445
  44. Schubert M., Kluge S., Schmölz L. et al. Long-chain metabolites of vitamin E: metabolic activation as a general concept for lipid-soluble vitamins? // Antioxidants. 2018. V. 7 (1). P. 10.
  45. Sharma I., Liao Y., Zheng X., Kanwar Y.S. New pandemic: obesity and associated nephropathy // Front. Med. 2021. V. 8. P. 673556.
  46. Szewczyk K., Chojnacka A., Górnicka M. Tocopherols and tocotrienols – bioactive dietary compounds; what is certain, what is doubt? // Int. J. Mol. Sci. 2021. V. 22 (12). P. 6222.
  47. Trapezov O.V. Behavioural polymorphism in defensive behaviour towards man in farm raised mink (Mustela vison Schreber, 1777) // Scientifur. 2000. V. 24. P. 103–109.
  48. Wilkins A.S., Wrangham R.W., Fitch W.T. The “domestication syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics // Genetics. 2014. V. 197 (3). P. 795–808.
  49. Zingg J.-M. Vitamin E: regulatory role on signal transduction // IUBMB Life. 2019. V. 71 (4). P. 456–478.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».