Angiogenesis in mycosis fungoides: pathogenetic significance and therapeutic options

Cover Page

Cite item

Full Text

Abstract

Mycosis fungoides is a primary epidermotropic cutaneous T-cell lymphoma characterized by proliferation of small and medium-sized T-lymphocytes with cerebriform nuclei. The pathogenesis of this disease is complex and has not been completely investigated, but angiogenesis plays a significant role. Angiogenesis is the process of forming new blood vessels based on an existing vascular network, which includes extracellular matrix remodeling, endothelial cell migration and proliferation, capillary bed cell differentiation, and formation of anastomoses. In case of mycosis fungoides, the best investigated markers of angiogenesis include CD31, CD34, angiogenin, angiopoietin-1, angiopoietin-2, VEGF-A, VEGF-C, PlGF, MMP-2, and MMP-9. The current data on the pathogenetic aspects of angiogenesis in patients with mycosis fungoides are encouraging, however the small and heterogeneous patient populations and the limited number of the pro- and anti-angiogenic factors investigated necessitate further researches. Angiogenesis markers can be considered as potential additional differential diagnostic criteria, prognostic signs, and therapeutic targets in patients with mycosis fungoides.

About the authors

Arfenya E. Karamova

State Research Center of Dermatovenereology and Cosmetology

Email: karamova@cnikvi.ru
ORCID iD: 0000-0003-3805-8489
SPIN-code: 3604-6491

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Moscow

Kseniya M. Aulova

State Research Center of Dermatovenereology and Cosmetology

Author for correspondence.
Email: aulovaksenia@mail.ru
ORCID iD: 0000-0002-2924-3036
SPIN-code: 8310-7019

Dermatovenerologist

Russian Federation, Moscow

References

  1. El Amawy HSI, Elgarhy LH, Mohammed Salem ML, Shareef MM, Mohammed Ali BM. Mycosis fungoides: Review and updates. Int J Dermatol Venereology Leprosy Sci. 2023;6(1):126–140. doi: 10.33545/26649411.2023.v6.i1b.143
  2. Vaidya T, Badri T. Mycosis Fungoides. 2023 Jul 31. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025 Jan.
  3. Korgavkar K, Xiong M, Weinstock M. Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol. 2013;149(11):1295–1299. doi: 10.1001/jamadermatol.2013.5526
  4. Amorim GM, Niemeyer-Corbellini JP, Quintella DC, Cuzzi T, Ramos-E-Silva M. Clinical and epidemiological profile of patients with early stage mycosis fungoides. An Bras Dermatol. 2018;93(4):546–552. doi: 10.1590/abd1806-4841.20187106
  5. Кубанов А.А., Рахматулина М.Р., Карамова А.Э., Воронцова А.А., Новоселова Е.Ю. Эпидемиологические и клинические параметры T-клеточных лимфом кожи (по данным регистра Российского общества дерматовенерологов и косметологов). Медицинские технологии. Оценка и выбор. 2023;45(4):10–18. [Kubanov AA, Rakhmatulina MR, Karamova AE, Vorontsova AA, Novoselova EYu. Epidemiological and clinical parameters of cutaneous T-cell lymphoma (based on the register of the Russian Society of Dermatovenerologists and Cosmetologists). Medical Technologies. Assessment and Choice. 2023;45(4):10–18. (In Russ.)] doi: 10.17116/medtech20234504110
  6. Hodak E, Amitay-Laish I. Mycosis fungoides: A great imitator. Clin Dermatol. 2019;37(3):255–267. doi: 10.1016/j.clindermatol.2019.01.004
  7. Zackheim HS, McCalmont TH. Mycosis fungoides: the great imitator. J Am Acad Dermatol. 2002;47(6):914–918. doi: 10.1067/mjd.2002.124696
  8. Nashan D, Faulhaber D, Ständer S, Luger TA, Stadler R. Mycosis fungoides: a dermatological masquerader. Br J Dermatol. 2007;156(1):1–10. doi: 10.1111/j.1365-2133.2006.07526.x
  9. Hristov AC, Tejasvi T, Wilcox RA. Mycosis fungoides and Sézary syndrome: 2019 update on diagnosis, risk-stratification, and management. Am J Hematol. 2019;94(9):1027–1041. doi: 10.1002/ajh.25577
  10. Miyagaki T, Sugaya M, Oka T, Takahashi N, Kawaguchi M, Suga H, et al. Placental growth factor and vascular endothelial growth factor together regulate tumour progression via increased vasculature in cutaneous T-cell lymphoma. Acta Derm Venereol. 2017;97(5):586–592. doi: 10.2340/00015555-2623
  11. Pileri A, Agostinelli C, Righi S, Fuligni F, Bacci F, Sabattini E, et al. Vascular endothelial growth factor A (VEGFA) expression in mycosis fungoides. Histopathology. 2015;66(2):173–181. doi: 10.1111/his.12445
  12. Zohdy M, Abd El Hafez A, Abd Allah MYY, Bessar H, Refat S. Ki67 and CD31 differential expression in cutaneous T-cell lymphoma and its mimickers: association with clinicopathological criteria and disease advancement. Clin Cosmet Investig Dermatol. 2020;13:431–442. doi: 10.2147/CCID.S256269
  13. Jankowska-Konsur A, Kobierzycki C, Grzegrzolka J, Piotrowska A, Gomulkiewicz A, Glatzel-Plucinska N, et al. Expression of CD31 in Mycosis Fungoides. Anticancer Res. 2016;36(9):4575–4582. doi: 10.21873/anticanres.11006
  14. Scarisbrick JJ, Kim YH, Whittaker SJ, Wood GS, Vermeer MH, Prince HM, et al. Prognostic factors, prognostic indices and staging in mycosis fungoides and Sézary syndrome: where are we now? Br J Dermatol. 2014;170(6):1226–1236. doi: 10.1111/bjd.12909
  15. Agar NS, Wedgeworth E, Crichton S, Mitchell TJ, Cox M, Ferreira S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol. 2010;28(31):4730–4739. doi: 10.1200/JCO.2009.27.7665
  16. Diamandidou E, Colome M, Fayad L, Duvic M, Kurzrock R. Prognostic factor analysis in mycosis fungoides/ Sézary syndrome. J Am Acad Dermatol. 1999;40(6 Pt 1):914–924. doi: 10.1016/s0190-9622(99)70079-4
  17. Benner MF, Jansen PM, Vermeer MH, Willemze R. Prognostic factors in transformed mycosis fungoides: a retrospective analysis of 100 cases. Blood. 2012;119(7):1643–1649. doi: 10.1182/blood-2011-08-376319
  18. Nikolaou VA, Papadavid E, Katsambas A, Stratigos AJ, Marinos L, Anagnostou D, et al. Clinical characteristics and course of CD8+ cytotoxic variant of mycosis fungoides: a case series of seven patients. Br J Dermatol. 2009;161(4):826–830. doi: 10.1111/j.1365-2133.2009.09301.x
  19. Kalay Yildizhan I, Sanli H, Akay BN, Sürgün E, Heper A. CD8+ cytotoxic mycosis fungoides: a retrospective analysis of clinical features and follow-up results of 29 patients. Int J Dermatol. 2020;59(1):127–133. doi: 10.1111/ijd.14689
  20. Farabi B, Seminario-Vidal L, Jamgochian M, Akay BN, Atak MF, Rao BK, et al. Updated review on prognostic factors in mycosis fungoides and new skin lymphoma trials. J Cosmet Dermatol. 2022;21(7):2742–2748. doi: 10.1111/jocd.14528
  21. Chen Z, Lin Y, Qin Y, Qu H, Zhang Q, Li Y, et al. Prognostic factors and survival outcomes among patients with mycosis fungoides in China: a 12-year review. JAMA Dermatol. 2023;159(10):1059–1067. doi: 10.1001/jamadermatol.2023.2634
  22. Bahalı AG, Su O, Cengiz FP, Emiroğlu N, Ozkaya DB, Onsun N. Prognostic factors of patients with mycosis fungoides. Postepy Dermatol Alergol. 2020;37(5):796–799. doi: 10.5114/ada.2020.100491
  23. Takayanagi-Hara R, Sawada Y, Sugino H, Minokawa Y, Kawahara-Nanamori H, Itamura M, et al. STING expression is an independent prognostic factor in patients with mycosis fungoides. Sci Rep. 2022;12(1):12739. doi: 10.1038/s41598-022-17122-1
  24. Bernhard EJ, Gruber SB, Muschel RJ. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci U S A. 1994;91(10):4293–4297. doi: 10.1073/pnas.91.10.4293
  25. Rasheed H, Tolba Fawzi MM, Abdel-Halim MR, Eissa AM, Mohammed Salem N, Mahfouz S. Immunohistochemical study of the expression of matrix metalloproteinase-9 in skin lesions of mycosis fungoides. Am J Dermatopathol. 2010;32(2):162–169. doi: 10.1097/DAD.0b013e3181b72678
  26. Vacca A, Moretti S, Ribatti D, Pellegrino A, Pimpinelli N, Bianchi B, et al. Progression of mycosis fungoides is associated with changes in angiogenesis and expression of the matrix metalloproteinases 2 and 9. Eur J Cancer. 1997;33(10):1685–1692. doi: 10.1016/s0959-8049(97)00186-x
  27. Kawaguchi M, Sugaya M, Suga H, Miyagaki T, Ohmatsu H, Fujita H, et al. Serum levels of angiopoietin-2, but not angiopoietin-1, are elevated in patients with erythrodermic cutaneous T-cell lymphoma. Acta Derm Venereol. 2014;94(1):9–13. doi: 10.2340/00015555-1633
  28. Sakamoto M, Miyagaki T, Kamijo H, Oka T, Takahashi N, Suga H, et al. Serum vascular endothelial growth factor A levels reflect itch severity in mycosis fungoides and Sézary syndrome. J Dermatol. 2018;45(1):95–99. doi: 10.1111/1346-8138.14033
  29. Farnsworth RH, Lackmann M, Achen MG, Stacker SA. Vascular remodeling in cancer. Oncogene. 2014;33(27):3496–505. doi: 10.1038/onc.2013.304
  30. Mazur G, Woźniak Z, Wróbel T, Maj J, Kuliczkowski K. Increased angiogenesis in cutaneous T-cell lymphomas. Pathol Oncol Res. 2004;10(1):34–36. doi: 10.1007/BF02893406
  31. Al-Ostoot FH, Salah S, Khamees HA, Khanum SA. Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treat Res Commun. 2021;28:100422. doi: 10.1016/j.ctarc.2021.100422
  32. Katayama Y, Uchino J, Chihara Y, Tamiya N, Kaneko Y, Yamada T, et al. Tumor neovascularization and developments in therapeutics. Cancers (Basel). 2019;11(3):316. doi: 10.3390/cancers11030316
  33. Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med. 2013;3(1):a006569. doi: 10.1101/cshperspect.a006569
  34. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 2005;9(2):267–285. doi: 10.1111/j.1582-4934.2005.tb00355.x
  35. Повещенко А.Ф., Коненков В.А. Механизмы и факторы ангиогенеза. Успехи физиологических наук. 2010;41(2):68–89. [Poveshchenko AF, Konenkov VI. Mechanisms and factors of angiogenesis. Uspekhi Fiziologicheskikh Nauk. 2010;41(2):68–89. (In Russ.)]
  36. Gianni-Barrera R, Trani M, Reginato S, Banfi A. To sprout or to split? VEGF, Notch and vascular morphogenesis. Biochem Soc Trans. 2011;39(6):1644–1648. doi: 10.1042/BST20110650.
  37. Sanati M, Afshari AR, Amini J, Mollazadeh H, Jamialahmadi T, Sahebkar A. Targeting angiogenesis in gliomas: Potential role of phytochemicals. Journal of Functional Foods. 2022;96(24):105192. doi: 10.1016/j.jff.2022.105192
  38. Васильев И.С., Васильев С.А., Абушкин И.А., Денис А.Г., Судейкина О.А., Лапин В.О., и др. Ангиогенез. Человек. Спорт. Медицина. 2017;17(1):36–45. [Vasilyev IS, Vasilyev SA, Abushkin IA, Denis AG, Sudeykina OA, Lapin VO, et al. Angiogenesis: literature review. Human. Sport. Medicine. 2017;17(1):36–45. (In Russ.)] doi: 10.14529/hsm170104
  39. Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235(4787):442–447. doi: 10.1126/science.2432664
  40. Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci. 2020;252:117670. doi: 10.1016/j.lfs.2020.117670
  41. Мнихович М.В., Безуглова Т.В., Ерофеева Л.М., Романов А.В., Буньков К.В., Зорин С.Н. Васкулогенная мимикрия в опухолях — современное состояние вопроса. Вопросы онкологии. 2022;68(6):700–707. [Mnikhovich MV, Bezuglova ТВ, Erofeeva LM, Romanov AV, Bun’kov KV, Zorin SN. Vasculogenic mimicry in tumors — current state of the issue. 2022;68(6):700–707. (In Russ.)] doi: 10.37469/0507-3758-2022-68-6-700-707
  42. Тишкова Е.Ю. Морфологическая характеристика и клиническое значение разных типов сосудов в ткани регионарных лимфатических узлов у больных раком желудка. Злокачественные опухоли. 2014;3:37–41. [Tishkova EYu. Morphological characteristics and clinical value of different types of vessels into a tissue of regional lymph nodes in patients with gastric cancer. Malignant Tumours. 2014;3:37–41. (In Russ.)] doi: 10.18027/2224-5057-2014-3-37-41
  43. Сеньчукова М.А., Макарова Е.В., Калинин Е.А., Ткачев В.В. Современные представления о происхождении, особенностях морфологии, прогностической и предиктивной значимости опухолевых сосудов. Российский биотерапевтический журнал. 2019;18(1):6–15. [Senchukova MA, Makarova EV, Kalinin EA, Tkachev VV. Modern ideas about the origin, features of morphology, prognostic and predictive significance of tumor vessels. Russian Journal of Biotherapy. 2019;18(1):6–15. (In Russ.)] doi: 10.17650/1726-9784-2019-18-1-6-15
  44. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109(5):625–637. doi: 10.1016/s0092-8674(02)00754-7
  45. Нефедова Н.А., Харлова О.А., Данилова Н.В., Мальков П.Г., Гайфуллин Н.М. Маркеры ангиогенеза при опухолевом росте. Архив патологии. 2016;78(2):55–63. [Nefedova NA, Kharlova OA, Danilova NV, Mal’kov PG, Gaifullin NM. Markers of angiogenesis in tumor growth. Russian Journal of Archive of Pathology. 2016;78(2):55–63. (In Russ.)] doi: 10.17116/patol201678255-62
  46. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155(3):739–752. doi: 10.1016/S0002-9440(10)65173-5
  47. Denekamp J, Hobson B. Endothelial-cell proliferation in experimental tumours. Br J Cancer. 1982;46(5):711–720. doi: 10.1038/bjc.1982.263
  48. Майбородин И.В., Красильников С.Э., Козяков А.Е., Бабаянц Е.В., Кулиджанян А.П. Целесообразность изучения опухолевого ангиогенеза как прогностического фактора развития рака. Новости хирургии. 2015;23(3):339–347. [Maiborodin IV, Krasilnikov SE, Kozjakov AE, Babayants EV, Kulidzhanyan AP. The feasibility of tumor-related angiogenesis study as a prognostic factor for cancer development. Novosti Khirurgii. 2015;23(3):339–347. (In Russ.)]
  49. Cпринджук М.В. Рак яичников: современный взгляд на проблему, значение ангиогенеза как механизма злокачественного роста и возможности компьютер-ассистированной обработки изображений гистопатологического препарата. Медицинский альманах. 2010;4:147–154 [Sprindzuk MV. Ovarian cancer: current view on the disease. The role of angiogenesis as the mechanism of the malignant growth and opportunities of the digital pathology image processing. Medical Almanac. 2010;4:147–154. (In Russ.)]
  50. Хлебникова А.Н., Новоселова Н.В. Особенности ангиогенеза в очагах базальноклеточного рака кожи. Вестник дерматологии и венерологии. 2014;3:60–64. [Khlebnikova AN, Novoselova NV. Particular features of angiogenesis in lesions in patients suffering from basal cell epithelioma. Vestnik Dermatologii i Venerologii. 2014;3:60–64. (In Russ.)] doi: 10.25208/0042-4609-2014-0-3-60-64
  51. Mazur G, Woźniak Z, Wróbel T, Maj J, Kuliczkowski K. Increased angiogenesis in cutaneous T-cell lymphomas. Pathol Oncol Res. 2004;10(1):34–36. doi: 10.1007/BF02893406
  52. Бурганова Г.Р., Абдулхаков С.Р., Гумерова А.А., Газизов И.М., Йылмаз Т.С., Титова М.А., и др. CD34, α-SMA и BCL-2 как маркеры эффективности трансплантации аутологичных гемопоэтических стволовых клеток больным алкогольным циррозом печени. Экспериментальная и клиническая гастроэнтерология. 2012;9:16–22. [Burganova GR, Abdulkhakov SR, Gumerova AA, Gazizov IM, Yylmaz TS, Titova MA, et al. CD34, α-SMA i BCL-2 kak markery effektivnosti transplantacii autologichnykh gemopoeticheskikh stvolovykh kletok bolnym alkogolnym cirrozom pecheni. Eksperimentalnaya i Klinicheskaya Gastroenterologiya. 2012;9:16–22. (In Russ.)]
  53. Bosseila M, Sayed Sayed K, El-Din Sayed SS, Abd El Monaem NA. Evaluation of angiogenesis in early mycosis fungoides patients: Dermoscopic and immunohistochemical study. Dermatology. 2015;231(1):82–86. doi: 10.1159/000382124
  54. Чехонин В.П., Шеин С.А., Корчагина А.А., Гурина О.И. Роль VEGF в развитии неопластического ангиогенеза. Вестник Российской академии медицинских наук. 2012;67(2):23–34. [Chekhonin VP, Shein SA, Korchagina AA, Gurina OI. VEGF in neoplastic angiogenesis. Annals of the Russian Academy of Medical Sciences. 2012;67(2):23–34. (In Russ.)] doi: 10.15690/vramn.v67i2.119
  55. Шевченко Ю.Л., Борщев Г.Г. Стимуляция ангиогенеза эндогенными факторами роста. Вестник национального медико-хирургического центра им. Н.И. Пирогова. 2018;13(3):96–102. [Shevchenko YL, Borshchev GG. Stimulation of angiogenesis with endogenic growth factors. Bulletin of Pirogov National Medical & Surgical Center. 2018;13(3):96–102. (In Russ.)] doi: 10.25881/BPNMSC.2018.73.55.022
  56. Данилова А.Б., Балдуева И.А., Нехаева Т.Л. Исследование продукции факторов ангиогенеза клетками солидных опухолей человека, культивируемых для приготовления противоопухолевых вакцин. Вопросы онкологии. 2014;60(6):728–735. [Danilova AB, Baldueva IA, Nekhaeva TL. Investigation of production of factors of angiogenesis by human solid tumor cells cultured for the preparation of antitumor vaccines. Voprosy Onkologii. 2014;60(6):728–735. (In Russ.)] doi: 10.37469/0507-3758-2014-60-6-728-735
  57. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Lovato P, Labuda T, Eriksen KW, et al. Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia. 2006;20(10):1759–1766. doi: 10.1038/sj.leu.2404350
  58. Suga H, Sugaya M, Miyagaki T, Ohmatsu H, Fujita H, Kagami S, et al. Association of nerve growth factor, chemokine (C-C motif) ligands and immunoglobulin E with pruritus in cutaneous T-cell lymphoma. Acta Derm Venereol. 2013;93(2):144–149. doi: 10.2340/00015555-1428
  59. Pedersen IH, Willerslev-Olsen A, Vetter-Kauczok C, Krejsgaard T, Lauenborg B, Kopp KL. Vascular endothelial growth factor receptor-3 expression in mycosis fungoides. Leuk Lymphoma. 2013;54(4):819–826. doi: 10.3109/10428194.2012.726720
  60. Oikonomou KA, Kapsoritakis AN, Kapsoritaki AI, Manolakis AC, Tiaka EK, Tsiopoulos FD, et al. Angiogenin, angiopoietin-1, angiopoietin-2, and endostatin serum levels in inflammatory bowel disease. Inflamm Bowel Dis. 2011;17(4):963–970. doi: 10.1002/ibd.21410
  61. Miyagaki T, Sugaya M, Suga H, Akamata K, Ohmatsu H, Fujita H, et al. Angiogenin levels are increased in lesional skin and sera in patients with erythrodermic cutaneous T cell lymphoma. Arch Dermatol Res. 2012;304(5):401–406. doi: 10.1007/s00403-012-1238-0
  62. Клишо Е.В., Кондакова И.В., Чойнзонов Е.Л. Матриксные металлопротеиназы в онкогенезе. Сибирский онкологический журнал. 2003;2:62–70. [Kondakova IV, Klisho EV, Choynzonov EL. Matrix metalloproteinases in oncogenesis. Sibirskij Onkologiceskij Zurnal. 2003;2:62–70. (In Russ.)]
  63. Спирина Л.В., Кондакова И.В., Клишо Е.В., Какурина Г.В., Шишкин Д.А. Металлопротеиназы как регуляторы неоангиогенеза в злокачественных новообразованиях. Сибирский онкологический журнал. 2007;1:67–71. [Spirina LV, Kondakova IN, Klisho EV, Kakurina GV, Shishkin DA. Metaloproteinases as neoangiogenesis regulators in cancer. Sibirskij Onkologiceskij Zurnal. 2007;1:67–71. (In Russ.)]
  64. Ганусевич И.И. Роль матриксных металлопротеиназ (ММП) при злокачественных новообразованиях. ІІ. Участие ММП в ангиогенезе, инвазии и метастазировании опухолей. Онкология. 2010;12(2):108–117. [Ganusevich II. Role of matrix metalloproteinases (MMPs) in malignancies. Participation of MMPs in angiogenesis, invasion and metastasis of tumors. Oncology. 2010;12(2):108–117. (In Russ.)]
  65. Vacca A, Moretti S, Ribatti D, Pellegrino A, Pimpinelli N, Bianchi B, et al. Progression of mycosis fungoides is associated with changes in angiogenesis and expression of the matrix metalloproteinases 2 and 9. Eur J Cancer. 1997;33(10):1685–1692. doi: 10.1016/s0959-8049(97)00186-x
  66. Mangi MH, Newland AC. Angiogenesis and angiogenic mediators in haematological malignancies. Br J Haematol. 2000;111(1):43–51. doi: 10.1046/j.1365-2141.2000.02104.x
  67. Zhang Q, Cao J, Xue K, Liu X, Ji D, Guo Y, et al. Recombinant human endostatin in combination with CHOP regimen for peripheral T cell lymphoma. Onco Targets Ther. 2016;10:145–151. doi: 10.2147/OTT.S117007
  68. Querfeld C, Rosen ST, Guitart J, Duvic M, Kim YH, Dusza SW, et al. Results of an open-label multicenter phase 2 trial of lenalidomide monotherapy in refractory mycosis fungoides and Sézary syndrome. Blood. 2014;123(8):1159–1166. doi: 10.1182/blood-2013-09-525915

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Karamova A.E., Aulova K.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».