The gonadal status of the spawners of northern malma, Salvelinus malma, white-spotted charr, S. leuconaenis, and their hybrids in the Utkholok River in the framework of the between-species hybridization problem in charrs of genus Salvelinus (Salmonidae)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The investigation of gonads in spawners of white-spotted charr, Salvelinus leucomaenis, northern malma, S. malma and their hybrids was evaluated by the macro- and microscopic approach. The data was obtained from the mature fish after their spawning period in the Utkholok River (North-West Kamchatka). No any remarkable deviations in the gonadal structure as well as in the cytological status were found in all three groupings. In all three groupings germ cells of subsequent generations were found in the generative tissue of the testes and ovaries, which indicates the ability of spawned individuals to re-mature and reproduce the next spawning season. The gonadal condition of hybrid individuals fully corresponds to that of polycyclic salmonid fish and does not differ from the parental species – malma and white-spotted charr, their gametogenesis proceeds without visible deviations. This indicates the potential ability of hybrids in the Utkholok River to reproduce multiple times and maintain their own population, unlike many other cases of interspecific hybridization in salmonids described in the literature. The data obtained on the state of the gonads and the results of the genetic analysis of hybrids carried out earlier indicate such an important feature of the hybrid zone “Utholok River” in charrs of the genus Salvelinus as the transition of the entire system to the state of the so-called “hybrid swarm”. In this regard, a scenario is likely when hybrids can move to the next stage of microevolutionary processes, leading them to isolation from their parent species.

作者简介

K. Kuzishchin

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: KK_office@mail.ru
俄罗斯联邦, Moscow

N. Emel’yanova

Lomonosov Moscow State University

Email: KK_office@mail.ru
俄罗斯联邦, Moscow

M. Gruzdeva

Lomonosov Moscow State University

Email: KK_office@mail.ru
俄罗斯联邦, Moscow

参考

  1. Анпилова В.И. 1967. Биология и разведение баунтовского сига Coregonus lavaretus baunti (Muchomedijarov) // Изв. ГосНИОРХ. Т. 63. С. 74–123.
  2. Груздева М.А., Кузищин К.В., Семенова А.В. и др. 2018. Редкий случай перманентной интрогрессивной гибридизации у гольцов рода Salvelinus (Salmonidae: Salmoniformes) в реке Утхолок, Западная Камчатка // Биология моря. Т. 44. № 6. С. 381–389. https://doi.org/10.1134/S0134347518060025
  3. Груздева М.А., Семенова А.В., Кузищин К.В. и др. 2020. Генетическая изменчивость мальмы (Salvelinus malma), кунджи (S. leucomaenis) и межвидовых гибридов из реки Утхолок (Северо-Западная Камчатка) // Генетика. Т. 56. № 1. С. 78–88. https://doi.org/10.31857/S0016675819090066
  4. Гудков П.К., Скопец М.Б. 1987. К вопросу о структуре популяции и некоторых особенностях биологии проходной мальмы Salvelinus malma (Walbaum) бассейна Охотского моря // Биология пресноводных рыб Дальнего Востока. Владивосток: Изд-во ДВО АН СССР. С. 79–88.
  5. Гудков П.К., Скопец М.Б. 1989. К методике определения возраста первого ската в море и обратного расчисления роста проходных гольцов рода Salvelinus (Salmonidae) // Вопр. ихтиологии. Т. 29. № 4.С. 601–608.
  6. Кузищин К.В., Семёнова А.В., Груздева М.А., Павлов Д.С. 2020. Закономерности формирования разнообразия жизненной стратегии и генетическая изменчивость камчатской микижи Parasalmo mykiss в локальной популяции // Там же. Т. 60. № 6. С. 636–654. https://doi.org/10.31857/S004287522006003X
  7. Кузищин К.В., Груздева М.А., Семенова А.В. 2023. О расширении зоны гибридизации гольцов рода Salvelinus – кунджи S. leucomaenis и северной мальмы S. malma (Salmonidae) – в реках Камчатского полуострова // Там же. Т. 63. № 6. С. 704–722. https://doi.org/10.31857/S0042875223060140
  8. Лапицкий И.И. 1949. Овогенез и годичный цикл яичников у сига-лудоги (Coregonus lavaretus ludoga Pol.) // Тр. лаб. основ рыбоводства. Т. 2. С. 37–63.
  9. Макеева А.П. 1992. Эмбриология рыб. M.: Изд-во МГУ, 216 c.
  10. Микодина Е.В. 2015. Фенодевианты семенников тихоокеанских лососей: норма или патология? // Расширенные матер. IV Междунар. конф. “Проблемы иммунологии, патологии, охраны здоровья рыб и других гидробионтов”. Ярославль: Филигрань. С. 48–56.
  11. Микодина Е.В., Пукова Н.В. 2002. Методические рекомендации по изучению фенодевиантов семенников у дальневосточных лососей. М.: Экономика и информатика, 93 с.
  12. Микодина Е.В., Коваленко С.А., Демьянов Т.В. 2000. Исследование тихоокеанских лососей в восточной части Охотского моря в районе нефтяных и газовых разработок // Экспресс-информация ВНИЭРХ. Сер. Воспроизводство и пастбищное выращивание гидробионтов. Вып. 3. С. 36–48.
  13. Микодина Е.В., Пукова Н.В., Бойко И.Г., Коваленко С.А. 2001. Анатомические аномалии половых желез у тихоокеанских лососей в разных регионах Дальнего Востока // Матер. Всерос. совещ. “Искусственное воспроизводство и охрана ценных видов рыб”. М.: МИК. С. 146–158.
  14. Микодина Е.В., Седова М.А., Чмилевский Д.А. и др. 2009. Гистология для ихтиологов. Опыт и советы. М.: Изд-во ВНИРО, 111 с.
  15. Мурза И.Г., Христофоров О.Л. 1991. Определение степени зрелости гонад и прогнозирование возраста достижения половой зрелости у атлантического лосося и кумжи. Л.: Изд-во ГосНИОРХ, 102 с.
  16. Павлов Д.С., Кириллов П.И., Кириллова Е.А. и др. 2016. Состояние и мониторинг биоразнообразия рыб, рыбообразных и среды их обитания в бассейне реки Утхолок. М.: Т-во науч. изд. КМК, 197 с.
  17. Пичугин М.Ю. 2015. Особенности роста и развития скелета ранней молоди северной мальмы Salvelinus malma malma из рек Западной Камчатки в связи с температурным режимом нерестилищ // Вопр. ихтиологии. Т. 55. № 4. С. 435–452. https://doi.org/10.7868/S0042875215040128
  18. Правдин И.Ф. 1966. Руководство по изучению рыб. М.: Пищ. пром-сть, 376 с.
  19. Радченко О.А. 2004. Интрогрессивная гибридизация гольцов рода Salvelinus по данным об изменчивости митохондриальной ДНК // Генетика. Т. 40. № 12. С. 1678–1685.
  20. Роскин Г.И., Левинсон Л.Б. 1957. Микроскопическая техника. М.: Сов. наука, 467 с.
  21. Тиллер И.В. 2007. Проходная мальма (Salvelinus malma) Камчатки // Исслед. вод. биол. ресурсов Камчатки и сев.-зап. части Тихого океана. Вып. 9. С. 79–95.
  22. Тиллер И.В. 2013. Структура популяции проходной мальмы Salvelinus malma р. Кихчик (Западная Камчатка) // Тез. докл. XIV Междунар. науч. конф. “Сохранение биоразнообразия Камчатки и прилегающих морей”. Петропавловск-Камчатский: Камчатпресс. С. 118–122.
  23. Углова Т.Ю., Кловач Н.В., Микодина Е.В. 2017. Аномалии гонад у горбуши острова Итуруп. Сезонная и межгодовая динамика. Возможные причины появления // Тр. ВНИРО. Т. 166. С. 43–54.
  24. Черешнев И.А., Волобуев В.В., Шестаков А.В., Фролов С.В. 2002. Лососевидные рыбы северо-востока России. Владивосток: Дальнаука, 496 с.
  25. Черняев Ж.А. 2017. Воспроизводство сиговых рыб. Эколого-физиологические особенности размножения и развития. М.: Т-во науч. изд. КМК, 329 с.
  26. Abbott R., Albach D., Ansell S. et al. 2013. Hybridization and speciation // J. Evol. Biol. V. 26. № 2. P. 229–246. https://doi.org/10.1111/j.1420-9101.2012.02599.x
  27. Ackerman P.A., Morgan J.D., Iwama G.K. 2005. Anesthetics // Supplement to Guidelines on the care and use of fish in research, teaching and testing. Ottawa: CCAC, 22 p.
  28. Albert V., Jónsson B., Bernatchez L. 2006. Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time // Mol. Ecol. V. 15. № 7. P. 1903–1916. https://doi.org/10.1111/j.1365-294X.2006.02917.x
  29. Allendorf F.W., Leary R.F., Spruell P., Wenburg J.K. 2001. The problems with hybrids: setting conservation guidelines // Trends Ecol. Evol. V. 16. № 11. P. 613–622. https://doi.org/10.1016/S0169-5347(01)02290-X
  30. Allendorf F.W., Leary R.F., Hitt N.P. et al. 2005. Cutthroat trout hybridization and the US Endangered Species Act: one species, two policies // Conserv. Biol. V. 19. № 4. P. 1326–1328. https://doi.org/10.1111/j.1523-1739.2005.00223.x
  31. Arnold M.L. 1997. Natural hybridization and evolution. Oxford: Oxford Univ. Press, 231 p.
  32. Baxter J.S., Taylor E.B., Devlin R.H. et al. 1997. Evidence for natural hybridization between Dolly Varden (Salvelinus malma) and bull trout (S. confluentus) in a northcentral British Columbia watershed // Can. J. Fish. Aquat. Sci. V. 54. № 2. P. 421–429. https://doi.org/10.1139/f96-289
  33. Berbel-Filho W.M., Pacheco G., Lira M.G. et al. 2022. Additive and non-additive epigenetic signatures of natural hybridization between fish species with different mating systems // Epigenetics. V. 17. № 13. P. 2356–2365. https://doi.org/10.1080/15592294.2022.2123014
  34. Bernatchez L., Glémet H., Wilson C.C., Danzmann R.G. 1995. Introgression and fixation of Arctic char (Salvelinus alpinus) mitochondrial genome in an allopatric population of brook trout (S. fontinalis) // Can. J. Fish. Aquat. Sci. V. 52. № 1. P. 179–185. https://doi.org/10.1139/f95-018
  35. Blanc J.M., Chevassus B. 1986. Survival, growth and sexual maturation of the tiger trout hybrid (Salmo trutta ♀ × Salvelinus fontinalis ♂) // Aquaculture. V. 52. № 1. P. 59–69. https://doi.org/10.1016/0044-8486(86)90108-0
  36. Blanc J.M., Poisson H., Vallée F. 1992. Survival, growth and sexual maturation of the triploid hybrid between rainbow trout and arctic char // Aquat. Living Resour. V. 5. № 1. P. 15–21. https://doi.org/10.1051/alr:1992003
  37. Bolnick D.I. 2009. Hybridization and speciation in centrarchids // Centrarchid fishes: diversity, biology, and conservation. Hoboken: Blackwell Publ. P. 39–69. https://doi.org/10.1002/9781444316032.ch2
  38. Bolnick D.I., Near T.J. 2005. Tempo of hybrid inviability in centrarchid fishes (Teleostei: Centrarchidae) // Evolution. V. 59. № 8. P. 1754–1767. https://doi.org/10.1111/j.0014-3820.2005.tb01824.x
  39. Boyer M.C., Muhlfeld C.C., Allendorf F.W. 2008. Rainbow trout (Oncorhynchus mykiss) invasion and the spread of hybridization with native westslope cutthroat trout (Oncorhynchus clarkii lewisi) // Can. J. Fish. Aquat. Sci. V. 65. № 4. P. 658–669. https://doi.org/10.1139/f08-001
  40. Broughton R.E., Vedala K.C., Crowl T.M., Ritterhouse L.L. 2011. Current and historical hybridization with differential introgression among three species of cyprinid fishes (genus Cyprinella) // Genetica. V. 139. № 5. P. 699–707. https://doi.org/10.1007/s10709-011-9578-9
  41. Campton D.E. 1987. Natural hybridization and introgression in fishes // Population genetics and fishery management. Caldwell, NJ: Blackburn Press. P. 161–192.
  42. Corush J.B., Fitzpatrick B.M., Wolfe E.L., Keck B.P. 2021. Breeding behaviour predicts patterns of natural hybridization in North American minnows (Cyprinidae) // J. Evol. Biol. V. 34. № 3. P. 486–500. https://doi.org/10.1111/jeb.13751
  43. DeHaan P.W., Schwabe L.T., Ardren W.R. 2010. Spatial patterns of hybridization between bull trout, Salvelinus confluentus, and brook trout, Salvelinus fontinalis in an Oregon stream network // Conserv. Genet. V. 11. № 3. P. 935–949. https://doi.org/10.1007/s10592-009-9937-6
  44. DeMarais B.D., Dowling T.E., Douglas M.E. et al. 1992. Origin of Gila seminuda (Teleostei: Cyprinidae) through introgressive hybridization: implications for evolution and conservation // Proc. Natl. Acad. Sci. USA. V. 89. № 7. P. 2747–2751. https://doi.org/10.1073/pnas.89.7.2747
  45. Dowling T.E., Childs M.R. 1992. Impact of hybridization on a threatened trout of the southwestern United States // Conserv. Biol. V. 6. № 3. P. 355–364. https://doi.org/10.1046/j.1523-1739.1992.06030355.x
  46. Dowling T.E., Secor C.L. 1997. The role of hybridization and introgression in the diversification of animals // Annu. Rev. Ecol. Syst. V. 28. № 1. P. 593–619. https://doi.org/10.1146/annurev.ecolsys.28.1.593
  47. Dumas S., Blanc J.M., Vallée F. et al. 1996. Survival, growth, sexual maturation and reproduction of brook charr, Salvelinus fontinalis (Mitchill), Arctic charr, Salvelinus alpinus L., and their hybrids // Aquac. Res. V. 27. № 4. P. 245–253. https://doi.org/10.1111/j.1365-2109.1996.tb00991.x
  48. Echelle A.A., Connor P.J. 1989. Rapid, geographically extensive genetic introgression after secondary contact between two pupfish species (Cyprinodon, Cyprinodontidae) // Evolution. V. 43. № 4. P. 717–727. https://doi.org/10.1111/j.1558-5646.1989.tb05171.x
  49. Ellstrand N.C., Prentice H.C., Hancock J.F. 1999. Gene flow and introgression from domesticated plants into their wild relatives // Annu. Rev. Ecol. Syst. V. 30. № 1. P. 539–563. https://doi.org/10.1146/annurev.ecolsys.30.1.539
  50. Epifanio J., Philipp D. 2000. Simulating the extinction of parental lineages from introgressive hybridization: the effects of fitness, initial proportions of parental taxa, and mate choice // Rev. Fish Biol. Fish. V. 10. № 3. P. 339–354. https://doi.org/10.1023/A:1016673331459
  51. Evolution illuminated. Salmon and their relatives. 2004. N.Y.: Oxford Univ. Press, 510 p.
  52. Falkowski S., Luczynsky M., Vuorinen J. 1995. Growth rate of whitefish, peled, and whitefish/peled hybrids in five Polish lakes // Arch. Hydrobiol. Spec. Issues Adv. Limnol. V. 46. P. 103–108.
  53. Fitzpatrick B.M., Johnson J.R., Kump D.K. et al. 2010. Rapid spread of invasive genes into a threatened native species // Proc. Natl. Acad. Sci. USA. V. 107. № 8. P. 3606–3610. https://doi.org/10.1073/pnas.0911802107
  54. Fujiwara A., Abe S., Yamaha E. et al. 1997. Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male // Chromosoma. V. 106. № 1. P. 44–52. https://doi.org/10.1007/s004120050223
  55. Fukui S., Koizumi I. 2020. Hybrids as potential mediators spreading non‐native genes: comparison of survival, growth, and movement among native, introduced and their hybrid salmonids // Ecol. Freshw. Fish. V. 29. № 2. P. 280–288. https://doi.org/10.1111/eff.12513
  56. Fukui S., May‐McNally S.L., Katahira H. et al. 2016. Temporal change in the distribution and composition of native, introduced, and hybrid charrs in northern Japan // Hydrobiologia. V. 783. № 1. P. 309–316. https://doi.org/10.1007/s10750-016-2688-8
  57. Fukui S., May‐McNally S.L., Taylor E.B., Koizumi I. 2018. Maladaptive secondary sexual characteristics reduce the reproductive success of hybrids between native and non‐native salmonids // Ecol. Evol. V. 8. № 23. P. 12173–12182. https://doi.org/10.1002/ece3.4676
  58. Gerber A.S., Tibbets C.A., Dowling T.E. 2001. The role of introgressive hybridization in the evolution of the Gila robusta complex (Teleostei: Cyprinidae) // Evolution. V. 55. № 10. P. 2028–2039. https://doi.org/10.1111/j.0014-3820.2001.tb01319.x
  59. Glémet H., Blier P., Bernatchez L. 1998. Geographical extent of Arctic char (Salvelinus alpinus) mtDNA introgression in brook char populations (S. fontinalis) from eastern Québec, Canada // Mol. Ecol. V. 7. № 12. P. 1655–1662. https://doi.org/10.1046/j.1365-294x.1998.00494.x
  60. Goudie C.A., Tiersch T.R., Simco B.A. et al. 1994. Early growth and morphology among hybrids of ictalurid catfishes // J. Appl. Aquac. V. 3. № 3–4. P. 235–256. https://doi.org/10.1300/J028v03n03_03
  61. Grant P.R., Grant B.R. 2002. Unpredictable evolution in a 30-year study of Darwin’s finches // Science. V. 296. № 5568. P. 707–711. https://doi.org/10.1126/science.1070315
  62. Guide to using drugs, biologics, and other chemicals in aquaculture. 2019. Bethesda: AFS Fish Cult. Sect., 82 p.
  63. Hamaguchi S., Sakaizumi M. 1992. Sexually differentiated mechanisms of sterility in interspecific hybrids between Oryzias latipes and O. curvinotus // J. Exp. Zool. V. 263. № 3. P. 323–329. https://doi.org/10.1002/jez.1402630312
  64. Hammar J., Dempson J.B., Sköld E. 1989. Natural hybridization between Arctic char (Salvelinus alpinus) and lake char (S. namaycush): evidence from Northern Labrador // Nord. J. Freshw Res. V. 65. P. 54–70.
  65. Hammar J., Dempson J.B., Verspoor E. 1991. Natural hybridization between Arctic char (Salvelinus alpinus) and brook trout (S. fontinalis): evidence from Northern Labrador // Can. J. Fish. Aquat. Sci. V. 48. № 8. P. 1437–1445. https://doi.org/10.1139/f91-171
  66. Harrison R.G., Bogdanowicz S.M. 1997. Patterns of variation and linkage disequilibrium in a field cricket hybrid zone // Evolution. V. 51. № 2. P. 493–505. https://doi.org/10.1111/j.1558-5646.1997.tb02437.x
  67. Hasselman D.J., Argo E.E., McBride M.C. et al. 2014. Human disturbance causes the formation of a hybrid swarm between two naturally sympatric fish species // Mol. Ecol. V. 23. № 5. P. 1137–1152. https://doi.org/10.1111/mec.12674
  68. Hata H., Uemura Y., Ouchi K., Matsuba H. 2019. Hybridization between an endangered freshwater fish and an introduced congeneric species and consequent genetic introgression // PLoS One. V. 14. № 2. Article e0212452. https://doi.org/10.1371/journal.pone.0212452
  69. Hewitt G.M. 2001. Speciation, hybrid zones and phylogeography – or seeing genes in space and time // Mol. Ecol. V. 10. № 3. P. 537–549. https://doi.org/10.1046/j.1365-294x.2001.01202.x
  70. Hewitt G.M. 2011. Quaternary phylogeography: the roots of hybrid zones // Genetica. V. 139. № 5. P. 617–638. https://doi.org/10.1007/s10709-011-9547-3.
  71. Hitt N.P., Frissell C.A., Muhlfeld C.C., Allendorf F.W. 2003. Spread of hybridization between native westslope cutthroat trout, Oncorhynchus clarki lewisi, and nonnative rainbow trout, Oncorhynchus mykiss // Can. J. Fish. Aquat. Sci. V. 60. № 12. P. 1440–1451. https://doi.org/10.1139/f03-125
  72. Jennings M.J., Philipp D.P. 2002. Alternative mating tactics in sunfishes (Centrarchidae): a mechanism for hybridization? // Copeia. V. 2002. № 4. P. 1102–1105. https://doi.org/10.1643/0045-8511(2002)002[1102:AMTISC]2.0.CO;2
  73. Jiggins C.D., Mallet J. 2000. Bimodal hybrid zones and speciation // Trends Ecol. Evol. V. 15. № 6. P. 250–255. https://doi.org/10.1016/S0169-5347(00)01873-5
  74. Kanda N., Leary R.F., Allendorf F.W. 2002. Evidence of introgressive hybridization between bull trout and brook trout // Trans. Am. Fish. Soc. V. 131. № 4. P. 772–782. https://doi.org/10.1577/1548-8659(2002)131<0772:EOIHBB>2.0.CO;2
  75. Keller I., Wagner C.E., Greuter L. et al. 2013. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes // Mol. Ecol. V. 22. № 11. P. 2848–2863. https://doi.org/10.1111/mec.12083
  76. Kirczuk L., Domagała J. 2011. Hybridization among fish and its importance to biodiversity // Fish management in a variable water environment. Wrocław: ARGI. P. 273–278.
  77. Kirczuk L., Domagała J., Dziewulska K. 2012. Spermatogenesis in reciprocal hybrids of Atlantic salmon (Salmo salar L., 1758) and sea trout (Salmo trutta trutta L., 1758) during their freshwater period // J. Appl. Ichthyol. V. 28. № 6. P. 906–913. https://doi.org/10.1111/jai.12081
  78. Kitano S., Ohdachi S., Koizumi I., Hasegawa K. 2014. Hybridization between native white-spotted charr and nonnative brook trout in the upper Sorachi River, Hokkaido, Japan // Ichthyol. Res. V. 61. № 1. P. 1–8. https://doi.org/10.1007/s10228-013-0362-y
  79. Leary R.F., Allendorf F.W., Knudsen K.L. 1983. Consistently high meristic counts in natural hybrids between brook trout and bull trout // Syst. Biol. V. 32. № 4. P. 369–376. https://doi.org/10.1093/sysbio/32.4.369
  80. Leary R.F., Allendorf F.W., Sage G.K. 1995. Hybridization and introgression between introduced and native fish // Am. Fish. Soc. Symp. V. 15. P. 91–101.
  81. LeGrande W.H., Dunham R.A., Smitherman R.O. 1984. Karyology of three species of catfishes (Ictaluridae: Ictalurus) and four hybrid combinations // Copeia. V. 1984. № 4. P. 873–878. https://doi.org/10.2307/1445331
  82. Lewontin R.C., Birch L.C. 1966. Hybridization as a source of variation for adaptation to new environments // Evolution. V. 20. № 3. P. 315–336. https://doi.org/10.2307/2406633
  83. Litsios G., Salamin N. 2014. Hybridisation and diversification in the adaptive radiation of clownfishes // BMC Evol. Biol. V. 14. Article 245. https://doi.org/10.1186/s12862-014-0245-5
  84. Ma H.-F., Yamazaki F. 1986. Fertility of hybrids between female masu salmon, Oncorhynchus masou and male pink salmon, O. gorbuscha // Bull. Fac. Fish. Hokkaido Univ. V. 37. № 4. P. 295–302.
  85. Mallet J. 2007. Hybrid speciation // Nature. V. 446. № 7133. P. 279–283. https://doi.org/10.1038/nature05706
  86. May-McNally S.L., Quinn T.P., Taylor E.B. 2015. Low levels of hybridization between sympatric Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) highlights their genetic distinctiveness and ecological segregation // Ecol. Evol. V. 5. № 15. P. 3031–3045. https://doi.org/10.1002/ece3.1583
  87. Muhlfeld C.C., McMahon T.E., Belcer D., Kershner J.L. 2009. Spatial and temporal spawning dynamics of native westslope cutthroat trout, Oncorhynchus clarkii lewisi, introduced rainbow trout, Oncorhynchus mykiss, and their hybrids // Can. J. Fish. Aquat. Sci. V. 66. № 7. P. 1153–1168. https://doi.org/10.1139/F09-073
  88. Muhlfeld C.C., Kovach R.P., Jones L.A. et al. 2014. Invasive hybridization in a threatened species is accelerated by climate change // Nat. Clim. Change. V. 4. № 7. P. 620–624. https://doi.org/10.1038/nclimate2252
  89. Muka T. 2001. Hybridization and introgression in the speciation process of fishes // Jpn. J. Ichthyol. V. 48. № 1. P. 1–18. https://doi.org/10.11369/jji1950.48.1
  90. Nolan M., Jobling S., Brighty G. et al. 2001. A histological description of intersexuality in the roach // J. Fish Biol. V. 58. № 1. P. 160–176. https://doi.org/10.1111/j.1095-8649.2001.tb00505.x
  91. Nolte A.W., Freyhof J., Tautz D. 2006. When invaders meet locally adapted types: rapid moulding of hybrid zones between sculpins (Cottus, Pisces) in the Rhine system // Mol. Ecol. V. 15. № 7. P. 1983–1993. https://doi.org/10.1111/j.1365-294X.2006.02906.x
  92. Ocalewicz K., Hliwa P., Pomianowski K. et al. 2014. Cytogenetic and histological studies of the brook trout, Salvelinus fontinalis (Mitchill), and the Arctic char, S. alpinus (L.) hybrids // Aquac. Int. V. 22. № 1. P. 281–288. https://doi.org/10.1007/s10499-013-9655-4
  93. Rahman M.A., Lee S.-G., Yusoff F.M. et al. 2018. Hybridization and its application in aquaculture // Sex control in aquaculture. Chichester: John Wiley and Sons Ltd. Press. P. 163–178. https://doi.org/10.1002/9781119127291.ch7
  94. Redenbach Z., Taylor E.B. 2002. Evidence for historical introgression along a contact zone between two species of char (Pisces: Salmonidae) in northwestern North America // Evolution. V. 56. № 5. P. 1021–1035. https://doi.org/10.1111/j.0014-3820.2002.tb01413.x
  95. Redenbach Z., Taylor E.B. 2003. Evidence for bimodal hybrid zones between two species of char (Pisces: Salvelinus) in northwestern North America // J. Evol. Biol. V. 16. № 6. P. 1135–1148. https://doi.org/10.1046/j.1420-9101.2003.00619.x
  96. Rhymer J.M., Simberloff D. 1996. Extinction by hybridization and introgression // Annu. Rev. Ecol. Syst. V. 27. № 1. P. 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83
  97. Rogers S.M., Bernatchez L. 2006. The genetic basis of intrinsic and extrinsic post‐zygotic reproductive isolation jointly promoting speciation in the lake whitefish species complex (Coregonus clupeaformis) // J. Evol. Biol. V. 19. № 6. P. 1979–1994. https://doi.org/10.1111/j.1420-9101.2006.01150.x
  98. Rubidge E.M., Taylor E.B. 2004. Hybrid zone structure and the potential role of selection in hybridizing populations of native westslope cutthroat trout (Oncorhynchus clarki lewisi) and introduced rainbow trout (O. mykiss) // Mol. Ecol. V. 13. № 12. P. 3735–3749. https://doi.org/10.1111/j.1365-294X.2004.02355.x
  99. Scribner K.T., Page K.S., Bartron M.L. 2000. Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference // Rev. Fish Biol. Fish. V. 10. № 3. P. 293–323. https://doi.org/10.1023/A:1016642723238
  100. Seehausen O. 2004. Hybridization and adaptive radiation // Trends Ecol. Evol. V. 19. № 4. P. 198–207. https://doi.org/10.1016/j.tree.2004.01.003
  101. Smith G.R. 1992. Introgression in fishes: significance for paleontology, cladistics, and evolutionary rates // Syst. Biol. V. 41. № 1. P. 41–57. https://doi.org/10.1093/sysbio/41.1.41
  102. Stoumboudi M.Th., Abraham M., Villwock M. et al. 1992. Gonadal development and somatic growth in an intergeneric cyprinid hybrid from Lake Kinneret, Israel // J. Appl. Ichthyol. V. 8. № 1–4. P. 110–121. https://doi.org/10.1111/j.1439-0426.1992.tb00673.x
  103. Suzuki R., Fukuda Y. 1971. Survival potential of F1 hybrids among salmonid fishes // Bull. Freshw. Fish. Res. Lab. V. 21. P. 69–83.
  104. Suzuki R., Fukuda Y. 1973. Sexual maturity of F1 hybrids among salmonid fishes // Ibid. V. 23. P. 57–74.
  105. Suzuki R., Fukuda Y. 1974. Intercrossing and backcrossing of F1 hybrids among salmonid fishes // Ibid. V. 24. P. 10–30.
  106. Taylor E.B. 2004. An analysis of homogenization and differentiation of Canadian freshwater fish faunas with an emphasis on British Columbia // Can. J. Fish. Aquat. Sci. V. 61. № 1. P. 68–79. https://doi.org/10.1139/f03-141
  107. Taylor S.A., Larson E.L. 2019. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature // Nat. Ecol. Evol. V. 3. № 2. P. 170–177. https://doi.org/10.1038/s41559-018-0777-y
  108. Taylor S.A., Larson E.L., Harrison R.G. 2015. Hybrid zones: windows on climate change // Trends Ecol. Evol. V. 30. № 7. P. 398–406. https://doi.org/10.1016/j.tree.2015.04.010
  109. Tsai Cf., Zeisel R.B. 1969. Natural hybridization of cyprinid fishes in Little Patuxent River, Maryland // Chesapeake Sci. V. 10. № 2. P. 69–74. https://doi.org/10.2307/1350834
  110. Verspoor E., Hammar J. 1991. Introgressive hybridization in fishes: the biochemical evidence // J. Fish Biol. V. 39. № sA. P. 309–334. https://doi.org/10.1111/j.1095-8649.1991.tb05094.x
  111. Williams I., Reeves G.H., Graziano S.L., Nielsen J.L. 2007. Genetic investigation of natural hybridization between rainbow and coastal cutthroat trout in the Copper River Delta, Alaska // Trans. Am. Fish. Soc. V. 136. № 4. P. 926–942. https://doi.org/10.1577/T06-214.1
  112. Wilson C.C., Bernatchez L. 1998. The ghost of hybrids past: fixation of arctic charr (Salvelinus alpinus) mitochondrial DNA in an introgressed population of lake trout (S. namaycush) // Mol. Ecol. V. 7. № 1. P. 127–132. https://doi.org/10.1046/j.1365-294x.1998.00302.x
  113. Wilson C.C., Hebert P.D.N. 1993. Natural hybridization between Arctic char (Salvelinus alpinus) and lake trout (S. namaycush) in the Canadian Arctic // Can. J. Fish. Aquat. Sci. V. 50. № 12. P. 2652–2658. https://doi.org/10.1139/f93-288
  114. Woram R.A., McGowan C., Stout J.A. et al. 2004. A genetic linkage map for Arctic char (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents // Genome. V. 47. № 2. P. 304–315. https://doi.org/10.1139/g03-127
  115. Yau M.M., Taylor E.B. 2014. Cold tolerance performance of westslope cutthroat trout (Oncorhynchus clarkii lewisi) and rainbow trout (Oncorhynchus mykiss) and its potential role in influencing interspecific hybridization // Can. J. Zool. V. 92. № 9. P. 777–784. https://doi.org/10.1139/cjz-2014-0047
  116. Young W.P., Ostberg C.O., Keim P., Thorgaard G.H. 2001. Genetic characterization of hybridization and introgression between anadromous rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki) // Mol. Ecol. V. 10. № 4. P. 921–930. https://doi.org/10.1046/j.1365-294X.2001.01247.x

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».