GENETIC VARIABILITY AND RELATIONSHIPS OF THE THREADED SCULPIN GYMNOCANTHUS PISTILLIGER (COTTIDAE)
- Authors: Radchenko O.A1, Petrovskaya A.V1
-
Affiliations:
- Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences
- Issue: Vol 65, No 5 (2025)
- Pages: 542–556
- Section: Articles
- URL: https://journal-vniispk.ru/0042-8752/article/view/362399
- DOI: https://doi.org/10.7868/S3034514625050031
- ID: 362399
Cite item
Abstract
Comparative molecular genetics study was performed for the threaded sculpin Gymnocanthus pistilliger from the Sea of Okhotsk, the Sea of Japan, and the Bering Sea. According to the analysis of mitochondrial DNA genes, the species heterogeneity is found, which does not relate to its geographical distribution. Gymnocanthus pistilliger is characterized by a closely related relationship with Gymnocanthus intermedius, the genetic differentiation between these species is low if considering them different species. The analysis of the obtained results in molecular genetics and morphological data published by other authors, suggest that G. pistilliger and G. intermedius represent either geographical forms (subspecies) of the same species, or evolutionarily young species.
About the authors
O. A Radchenko
Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences
Email: mradchenko@mail.ru
Magadan, Russia
A. V Petrovskaya
Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of SciencesMagadan, Russia
References
- Дылдин Ю.В., Орлов А.М., Великанов А.Я. и др. 2020. Ихтиофауна залива Анива (остров Сахалин, Охотское море). Новосибирск: Золотой колос, 396 с.
- Линдберг Г.У., Красюкова З.В. 1987. Рыбы Японского моря и сопредельных частей Охотского и Желтого морей. Ч. 5. Л.: Наука, 526 с.
- Морева И.Н., Радченко О.А., Незнанова С.Ю. и др. 2016. Родственные отношения Stichaeus nozawae (Jordan et Snyder, 1902) и Stichaeus grigorjewi (Herzenstein, 1890) (Pisces: Stichaeidae) по данным молекулярно-генетического, карнологического анализа и ультраструктурного исследования сперматозоидов // Биология моря. Т. 42. № 5. С. 359–367.
- Морева И.Н., Радченко О.А., Петровская А.В., Борисенко С.А. 2017. Молекулярно-генетический и карно-логический анализ двурогих бычков группы Enophys diceraus (Cottidae) // Генетика. Т. 53. № 9. С. 1086–1097. https://doi.org/10.7868/S0016675817090119
- Морева И.Н., Радченко О.А., Петровская А.В. 2019. Кариологическая и молекулярно-генетическая дифференциация бахромчатых бычков рода Porocotius Gill, 1859 (Cottidae: Myoxocephalinae) // Биология моря. Т. 45. № 3. С. 208–216. https://doi.org/10.1134/S0134347519020086
- Панченко В.В., Матвеев А.А., Панченко Л.Л. 2020. Сезонное распределение нитчатого шлемоносца Gymnocanthus pistilliger (Cottidae) в российских водах Японского моря // Вопр. ихтиологии. Т. 60. № 2. С. 174–182. https://doi.org/10.31857/S0042875220020174
- Парин Н.В., Евсеенко С.А., Васильева Е.Д. 2014. Рыбы морей России: аннотированный каталог. М.: Т-во науч. изд. КМК, 733 с.
- Радченко О.А. 2005. Изменчивость митохондриальной ДНК гольцов рода Salvelinus. Магадан: Изд-во СВНЦ ДВО РАН, 153 с.
- Радченко О.А., Петровская А.В. 2019. Молекуляр-но-генетическая дифференциация дальневосточной широколобки Megalocottus platycephalus (Pallas, 1814) (Scorpaeniformes: Cottidae) // Биология моря. Т. 45. № 1. С. 61–72. https://doi.org/10.1134/S0134347519010078
- Рязанова И.Н., Полякова Н.Е. 2012. Дифференциация крупночешуйной красноперки Tribolodon hakonensis (Pisces: Cyprinidae) на российской части ареала по данным карнологического анализа и ПЦР-ПДРФ-анализа митохондриальной ДНК // Генетика. Т. 48. № 2. С. 225–234.
- Шмидт П.Ю. 1950. Рыбы Охотского моря. М.; Л.: Изд-во АН СССР, 370 с.
- Bandelt H.-J., Forster P., Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. V. 16. № 1. P. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
- Dyldin Yu.V., Orlov A.M. 2022. Annotated list of ichthyofauna of inland and coastal waters of Sakhalin Island. 4. Families Triglidae—Agonidae // J. Ichthyol. V. 62. № 1. P. 34–68. https://doi.org/10.1134/S0032945222010039
- Fricke R., Eschmeyer W.N., van der Laan R. (eds.). 2024. Eschmeyer's catalog of fishes: genera, species, references (http://researcharchive.calacademy.org/research/ichthyology/catalog/fisheratmain.asp. Version 10/2024).
- Hoff G.R. 2000. Biology and ecology of threaded sculpin, Gymnocanthus pistilliger, in the eastern Bering Sea // Fish. Bull. V. 98. № 4. P. 711–722.
- Huson D.H., Bryant D. 2006. Application of phylogenetic networks in evolutionary studies // Mol. Biol. Evol. V. 23. № 2. P. 254–267. https://doi.org/10.1093/molbev/msj030
- Kodama Y., Yanagimoto T., Shimohara G. et al. 2008. Divergence age of a deep-sea demersal fish, Bothrocara hollandi, between the Japan Sea and the Okhotsk Sea // Mol. Phylogenet. Evol. V. 49. № 2. P. 682–687. https://doi.org/10.1016/j.vmpev.2008.08.022
- Kumar S., Stecher G., Suleski M. et al. 2024. MEGA12: Molecular Evolutionary Genetics Analysis version 12 for adaptive and green computing // Mol. Biol. Evol. V. 41. № 12. Article msae263. https://doi.org/10.1093/molbev/msae263
- Leaché A.D., Reeder T.W. 2002. Molecular systematics of the Eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches // Syst. Biol. V. 51. № 1. P. 44–68. https://doi.org/10.1080/106351502753475871
- Maniatis T., Fritsch E.F., Sambrook J. 1982. Molecular cloning, a laboratory manual. N.Y.: Cold Spring Harbor Lab., 480 p.
- Mecklenburg C.W., Mecklenburg T.A., Thorsteinson L.K. 2002. Fishes of Alaska. Bethesda: Am. Fish. Soc., 1037 p.
- Mecklenburg C.W., Mecklenburg T.A., Sheiko B.A., Steinke D. 2016. Pacific Arctic marine fishes. Akureyri: CAFF, 377 p.
- Meyer A. 1993. Evolution of mitochondrial DNA in fishes // Biochemistry and molecular biology of fishes. V. 2. Amsterdam: Elsevier Press. P. 1–38.
- Moreva I.N., Radchenko O.A., Petrovskaya A.V. 2021. Differentiation of the frog sculpin Myoxocephalus stelleri Tilesius, 1811 (Actinopterysii, Cottidae) based on mtDNA and karyotype analyses // Comp. Cytogenet. V. 15. № 2. P. 179–197. http://doi.org/10.3897/CompCytogen.v15.i2.63207
- Puillandre N., Brouillet S., Achaz G. 2021. ASAP: assemble species by automatic partitioning // Mol. Ecol. Resour. V. 21. № 2. P. 609–620. http://doi.org/10.1111/1755-0998.13281
- Radchenko O.A., Moreva I.N., Poezzhalova-Chegadaeva E.A., Petrovskaya A.V. 2023. Identification, differentiation, and relationships of the warty sculpin Myoxocephalus verrucosus (Cottidae) from the Arctic, East Siberian Sea // Reg. Stud. Mar. Sci. V. 67. Article 103182. https://doi.org/10.1016/j.rsma.2023.103182
- Rambaut A., Drummond A.J., Xie D. et al. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7 // Syst. Biol. V. 67. № 5. P. 901–904. https://doi.org/10.1093/sysbio/syy032
- Ronquist F., Teslenko M., van der Mark P. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space // Syst. Biol. V. 61. № 3. P. 539–542. https://doi.org/10.1093/sysbio/sys029
- Sakuma K., Ueda Y., Hamatsu T., Kojima S. 2014. Contrasting population histories of the deep-sea demersal fish, Lycodes matsubarai, in the Sea of Japan and the Sea of Okhotsk // Zool. Sci. V. 31. № 6. P. 375–382. https://doi.org/10.2108/zs130271
- Wilson D.E. 1973. Revision of the cottid genus Gymnocanthus, with a description of their osteology: M.S. Thesis. Vancouver: Univ. Brit. Columbia, 223 p. https://doi.org/10.14288/1.0093237
- Yamazaki A., Markevich A., Munehara H. 2013. Molecular phylogeny and zoogeography of marine sculpins in the genus Gymnocanthus (Teleostei; Cottidae) based on mitochondrial DNA sequences // Mar. Biol. V. 160. № 10. P. 2581–2589. https://doi.org/10.1007/s00227-013-2250-4
Supplementary files


