INFLUENCE OF TEMPERATURE ON SPONTANEOUS LOCOMOTOR ACTIVITY OF THE SADDLER BICHIR POLYPTERUS ENDLICHERII (POLYPTERIDAE)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the open field method, the spontaneous locomotor activity of the saddler bichir Polypterus endlicherii has been estimated at different water temperatures (20, 25, 30, and 34°C). The locomotor activity of the fish increases by 1.40 times in the temperature range of 20–25°C (temperature coefficient 2.1); more strongly (2.00 times) it increases in the temperature range of 25–30°C (4.1), while in the range of 30–34°C (1.1) it changes insignificantly (1.04 times). With an increase in temperature, the swimming speed and the distance covered by the fish in one hour increase; subsequently, the time spent on crossing the test line decreases. The coefficient of variation of the locomotor activity indices decreases with an increase in temperature. Comparison with the previously studied Senegal bichir P. senegalus revealed both similarities and differences in the locomotor activity of these two sympatric species.

About the authors

A. O Kasumyan

Lomonosov Moscow State University

Moscow, Russia

V. V Zdanovic

Lomonosov Moscow State University

Email: zdanovich@mail.ru
Moscow, Russia

V. V Sataeva

Lomonosov Moscow State University

Moscow, Russia

References

  1. Зданович В.В., Сатаева В.В., Касумян А.О. 2024. Термоизбирание у симпатрических многопёров: сенегальского Polypterus senegalus и Эндлихера P. endlicherii (Polypteridae) // Вопр. ихтиологии. Т. 64. № 6. С. 763–772. https://doi.org/10.31857/S0042875224060108
  2. Касумян А.О., Зданович В.В., Сатаева В.В. 2024. Двигательная активность интактного и зрительно депривированного сенегальского многопёра Polypterus senegalus (Cladistia) при разной температуре воды // Вопр. ихтиологии. Т. 64. № 3. С. 354–362. https://doi.org/10.31857/S0042875224030097
  3. Касумян А.О., Зданович В.В., Сатаева В.В. 2025. Термоидеферендное поведение сенегальского многопёра Polypterus senegalus (Polypteridae) при хронической зрительной депривации // Вопр. ихтиологии. Т. 65. № 1. С. 114–123. https://doi.org/10.31857/S0042875225010086
  4. Смирнов А.К., Смирнова Е.С. 2020. Влияние температуры на двигательную активность и плавательную способность молодых плотвы Rutilus rutilus (Cyprinidae) // Вопр. ихтиологии. Т. 60. № 2. С. 219–228. https://doi.org/10.31857/S0042875220020228
  5. Coates M. 2017. Plenty of fish in the tree // Nature. V. 549. № 7671. P. 167–169. https://doi.org/10.1038/s49167a
  6. Foster K.L., Dhuper M., Standen E.M. 2018. Fin and body neuromuscular coordination changes during walking and swimming in Polypterus senegalus // J. Exp. Biol. V. 221. № 17. Article jeb168716. https://doi.org/10.1242/jeb.168716
  7. Froese R., Pauly D. (eds.). 2024. FishBase. World Wide Web electronic publication (www.fishbase.org. Version 10/2024).
  8. Gardin A., Otero O., Reveillac E. et al. 2023. Seasonality and growth in tropical freshwater ectotherm vertebrates: results from one-year experimentation in the African grey bichir, girafie catfish, and the West African mud turtle // Ecol. Evol. V. 13. № 3. Article e9936. https://doi.org/10.1002/ece3.9936
  9. Gardiner B.G., Schaeffer B., Masserie J.A. 2005. A review of the lower actinopterygian phylogeny // Zool. J. Linn. Soc. V. 144. № 4. P. 511–525. https://doi.org/10.1111/j.1096-3642.2005.00181.x
  10. Giles S., Xu G.-H., Near T.J., Friedman M. 2017. Early members of "living fossil" lineage imply later origin of modern ray-finned fishes // Nature. V. 549. № 7671. P. 265–268. https://doi.org/10.1038/nature23654
  11. Hurley I.A., Mueller R.L., Dunn K.A. et al. 2007. A new time-scale for ray-finned fish evolution // Proc. R. Soc. B. V. 274. № 1609. P. 489–498. https://doi.org/10.1098/rspb.2006.3749
  12. Lachance S., Magnan P., FitzGerald G.J. 1987. Temperature preferences of three sympatric sticklebacks (Gasterosteidae) // Can. J. Zool. V. 65. № 6. P. 1573–1576. https://doi.org/10.1139/z87-245
  13. Lauder G.V. Jr. 1980. Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia // J. Morphol. V. 163. № 3. P. 283–317. https://doi.org/10.1002/jmor.1051630305
  14. Lévêque C. 1997. Biodiversity dynamics and conservation: the freshwater fish of tropical Africa. Cambridge: Cambridge Univ. Press, 452 p.
  15. Lutek K., Standen E.M. 2021. Increasing viscosity helps explain locomotor control in swimming Polypterus senegalus // Integr. Org. Biol. V. 3. № 1. Article obab024. https://doi.org/10.1093/iob/obab024
  16. Lutek K., Foster K.L., Standen E.M. 2022. Behaviour and muscle activity across the aquatic–terrestrial transition in Polypterus senegalus // J. Exp. Biol. V. 225. № 23. Article jeb243902. https://doi.org/10.1242/jeb.243902
  17. Mandal P., Cai L., Tu Z. et al. 2016. Effects of acute temperature change on the metabolism and swimming ability of juvenile sterlet sturgeon (Acipenser ruthenus, Linnaeus 1758) // J. Appl. Ichthyol. V. 32. № 2. P. 267–271. https://doi.org/10.1111/jai.13033
  18. Meskendahl L., Fontes R.P., Herrmann J.-P., Temming A. 2019. Metabolic costs of spontaneous swimming in Sprattus sprattus L., at different water temperatures // PLoS One. V. 14. № 11. Article e0225568. https://doi.org/10.1371/journal.pone.0225568
  19. Morescalchi M.A., Barucca M., Slingo V., Capriglione T. 2010. Polypteridae (Actinopterygii: Cladistia) and DANA-SINES insertions // Mar. Genomics. V. 3. № 2. P. 79–84. https://doi.org/10.1016/j.margen.2010.06.001
  20. Moritz T. 2017. Fishery impact on bichirs (Polypteridae, Actinopterygii) in the Pendjari River (Benin) // Bull. Fish Biol. V. 16. № 1/2. P. 83–86.
  21. Moritz T., Britz R. 2019. Revision of the extant Polypteridae (Actinopterygii: Cladistia) // Ichthyol. Explor. Freshw. V. 29. № 2. P. 97–192. https://doi.org/10.23788/IEF-1094
  22. Moritz T., Lalèyè P. 2018. Fishes of the Pendjari National Park (Benin, West Africa) // Bull. Fish Biol. V. 18. № 1/2. P. 1–57.
  23. Ohlberger J., Staaks G.B.O., Petzoldt T. et al. 2008. Physiological specialization by thermal adaptation drives ecological divergence in a sympatric fish species pair // Evol. Ecol. Res. V. 10. P. 1173–1185.
  24. Peck M.A., Buckley L.J., Bengtson D.A. 2006. Effects of temperature and body size on the swimming speed of larval and juvenile Atlantic cod (Gadus morhua): implications for individual-based modelling // Environ. Biol. Fish. V. 75. № 4. P. 419–429. https://doi.org/10.1007/s10641-006-0031-3
  25. Pfeiffer W. 1969. Der Geruchssinn der Polypteridae (Pisces, Brachiopterygii) // Z. Vergl. Physiol. V. 63. № 2. P. 151–164. https://doi.org/10.1007/BF000298337
  26. Raji A., Saidu A.K., Maryam A.T. 2004. Preliminary studies on food and feeding habits of Polypterus endlicheri and Polypterus senegalus in Lake Chad // Proc. 18th Ann. conf. Fish. Soc. Nigeria. Owerri: FISON. P. 186–193.
  27. Reynolds W.W., Casterlin M.E. 1978. Complementarity of thermoregulatory rhythms in Micropterus salmoides and M. dolomieui // Hydrobiologia. V. 60. № 1. P. 89–91. https://doi.org/10.1007/BF00018689
  28. Sataeva V.V., Kasumyan A.O. 2022. Orosensory preferences and feeding behavior of Cladistia: a comparison of gray bichir Polypterus senegalus and saddle bichir P. endlicherii (Polypteridae) // J. Ichthyol. V. 62. № 7. P. 1501–1520. https://doi.org/10.1134/S003294522204021X
  29. Schurmann H., Steffensen J.F. 1994. Spontaneous swimming activity of Atlantic cod Gadus morhua exposed to graded hypoxia at three temperatures // J. Exp. Biol. V. 197. № 1. P. 129–142. https://doi.org/10.1242/jeb.197.1.129
  30. Standen E.M., Du T.Y., Laroche P., Larsson H.C.E. 2016. Locomotor flexibility of Polypterus senegalus across various aquatic and terrestrial substrates // Zoology. V. 119. № 5. P. 447–454. https://doi.org/10.1016/j.zool.2016.05.001
  31. Sudagar M., Kheirabadi H., Masaeli S. 2023. A review on the morphology, biology, reproduction and breeding of Polypterus fish // J. Ornam. Aquat. V. 10. № 1. P. 35–40. https://dor.isc.ac/dor/20.1001.1.24234575.1402.10.1.4.2
  32. Van Wassenbergh S., Bonte C., Michel K.B. 2017. Terrestrial capture of prey by the reedfish, a model species for stem tetrapods // Ecol. Evol. V. 7. № 11. P. 3856–3860. https://doi.org/10.1002/ece3.2694
  33. Vicente P., Almeida J., Ribeiro L. et al. 2024. Effects of water temperature and structural habitat complexity on the routine swimming speed and escape response of post-settlement stage white seabream // Oceans. V. 5. № 1. P. 38–47. https://doi.org/10.3390/oceans5010003
  34. Whitlow K.R., Rossi C.F., Gidmark N.J. et al. 2022. Suction feeding biomechanics of Polypterus bichir: investigating linkage mechanisms and the contributions of cranial kinesis to oral cavity volume change // J. Exp. Biol. V. 225. № 3. Article jeb243283. https://doi.org/10.1242/jeb.243283
  35. Wilhelm B.C., Du T.Y., Standen E.M., Larsson H.C.E. 2015. Polypterus and the evolution of fish pectoral musculature // J. Anat. V. 226. № 6. P. 511–522. https://doi.org/10.1111/joa.12302

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).