Structural Сharacteristics, Mechanical Properties, Wear and Oxidation Resistance of Coatings in the Mo–Y–Zr–Si–B System Obtained on Molybdenum by Magnetron Sputtering in the DCMS and HIPIMS Modes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Mo–(Y, Zr)–Si–B coatings were obtained by direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HIPIMS) using composite targets of MoSi2 + 10% MoB and (MoSi2 + 10% MoB) + 20% ZrB2, with the Y segments located in their erosion zone with a total area of 5 and 10 cm2. The structure and composition of the coatings were studied by scanning and transmission electron microscopy, glow discharge optical emission spectroscopy, and XRD. The hardness, elastic modulus, elastic recovery, adhesive strength, and resistance of the coatings to abrasive wear and cyclic impact loading were determined. The oxidation resistance and thermal stability were estimated by heating the coatings to a maximum temperature of 1000°C in a muffle furnace and in a transmission electron microscope column, respectively. It has been established that the Mo–Si–B coating contains the h-MoSi2 phase with preferred orientation in the [110] direction and crystallite size of 75 nm. Alloying of Zr and Y coatings, as well as the transition from DCMS to HIPIMS mode, contributed to the suppression of preferential growth of crystallites, increasing their dispersity and the volume fraction of the amorphous phase, which led to an increase in the crack resistance and adhesive strength of the coatings. The HIPIMS method in coating deposition caused an increase in the hardness and elastic modulus by 10%; resistance to cyclical impact, by 60%; and abrasive resistance, by 20%; it also increased oxidation resistance up to 20%. Mo–Y–Zr–Si–B coatings with the optimal composition demonstrated high thermal stability; the main structural component is the hexagonal phase h-MoSi2; it remained in the temperature range of 20–1000°C and also resulted in a more than ninefold increased oxidation resistance of the Mo substrate at 1000°C.

Авторлар туралы

F. Kiryukhantsev-Korneev

National University of Science and Technology

Email: kiruhancev-korneev@yandex.ru
119049, Moscow, Russia

F. Chudarin

National University of Science and Technology

Email: kiruhancev-korneev@yandex.ru
119049, Moscow, Russia

R. Vakhrushev

National University of Science and Technology

Email: kiruhancev-korneev@yandex.ru
119049, Moscow, Russia

A. Sytchenko

National University of Science and Technology

Email: kiruhancev-korneev@yandex.ru
119049, Moscow, Russia

M. Karpov

Osipyan Institute of Solid State Physics Russian Academy of Sciences

Email: kiruhancev-korneev@yandex.ru
142432, Chernogolovka, Russia

R. Feng

China University of Mining and Technology

Email: kiruhancev-korneev@yandex.ru
221116, Xuzhou, China

E. Levashov

National University of Science and Technology

Хат алмасуға жауапты Автор.
Email: kiruhancev-korneev@yandex.ru
119049, Moscow, Russia

Әдебиет тізімі

  1. Perepezko J.H. // Science. 2009. V. 326. P. 1068–1069.
  2. Su Ranran, Liu Longfei, Perepezko John H. // International J. Refractory Metals and Hard Materials. 2023. V. 113. P. 106199.
  3. Zhu L., Zhu Y., Ren X., Zhang P., Qiao J., Feng P. // Surface and Coatings Technology. 2019. V. 375. P. 773–781.
  4. Fu T., Zhang Y., Shen F., Cui K., Chen L. // Materials Characterization. 2022. V. 192. P. 112192.
  5. Wei Li, Jinglian Fan, Yan Fan, Lairong Xiao, Huichao Cheng // J. Alloys and Compounds. 2018. V. 740. P. 711–718.
  6. Yanagihara K., Przybylski K., Maruyama T. // Oxidation of Metals. 1997. V. 47. P. 277–293.
  7. Kiryukhantsev-Korneev P.V. et al. // Russian J. Non-Ferrous Metals. V. 55 № 6. P. 645–651. https://doi.org/10.3103/S106782121406011X
  8. Kiryukhantsev-Korneev Ph.V., Iatsyuk I.V., Shvindina N.V., Levashov E.A., Shtansky D.V. // Corrosion Science. 2017. V. 123. P. 319–327.
  9. Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Sviridova T.A., Sidorenko D.A., Andreev N.V., Klechkovskaya V.V., Polčak J., Levashov E.A. // Surface and Coatings Technology. 2022. V. 442. P. 128141.
  10. Won June Choi et al. // International J. Refractory Metals and Hard Materials. 2019. V. 80. P. 238–242,
  11. Zilong Wu, Kanglu Feng, Jiangbo Sha, Chungen Zhou // Progress in Natural Science: Materials International. 2022. V. 32. № 6. P. 752–757.
  12. Kiryukhantsev-Korneev F.V., Sytchenko A.D., Vakhrushev R.A. et al. // Phys. Atom. Nuclei. 2022. V. 85. P. 2088–2091.
  13. Zhestkova B.E., Terent’eva V.S. // Russian Metallurgy (Metally). 2010. V. 1. P. 33–40.
  14. Pang J., Blackwood D.J. // Corr. Sci. 2016. V. 105. P. 17–24.
  15. Totemeier T.C., Wright R.N., Swank W.D. // Intermetallics. 2004. V. 12. № 12. P. 1335–1344.
  16. Zhang Y., Li H., Ren J., Li K. // Corr. Sci. 2013. V. 72. P. 150–155.
  17. Kuznetsov S.A., Rebrov E.V., Mies M.J.M., de Croon M.H.J.M., Schouten J.C. // Surf. Coat. Technol. 2006. V. 201. P. 971–978.
  18. Kudryashov A.E et al. // Surf. Coat. Technol. 2018. V. 335. P. 104–117.
  19. Zhu L., Chen P., Cai Z., Feng P., Kang X., Akhtar F., Wang X. // Transactions of Nonferrous Metals Society of China. 2022. V. 32. № 3. P. 935–946.
  20. Lange A., Heilmaier M., Sossamann T.A., Perepezko J.H. // Surface and Coatings Technology. 2015. V. 266. P. 57–63.
  21. Perepezko J.H., Sossaman T.A., Taylor M. // J. Them. Spray Tech. 2017. V. 26. P. 929–940.
  22. Ritt P., Sakidja R., Perepezko J.H. // Surf. Coat. Technol. 2012. V. 206. P. 4166–4172.
  23. Shtansky D.V. et al. // Surface and Coatings Technology. 2012. V. 208. P. 14–23.
  24. Kukla R. // Surf. Coat. Technol. 1997. V. 93. № 1. P. 1–6.
  25. Kiryukhantsev-Korneev Ph.V., Horwat D., Pierson J.F., Levashov E.A. // Tech. Phys. Lett. 2014. V. 40. P. 614–617.
  26. Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Vorotilo S.A., Levashov E.A. // Ceramics International. 2020. V. 46. № 2. P. 1775–1783.
  27. Helmersson U., Lattemann M., Bohlmark J., Ehiasarian A.P., Gudmundsson J.T. // Thin Solid Films. 2006. V. 513. P. 1–24.
  28. Xie Dong, Wei L.J., Liu H.Y., Zhang K., Leng Y.X., Matthews D.T.A., Ganesan R., Su Y.Y. // Surf. Coat. Technol. 2022. V. 442. 128192.
  29. Lattemann M., Ehiasarian A.P., Bohlmark J., Persson P.Å.O., Helmersson U. // Surf. Coat. Technol. 2006. V. 200. P. 6495–6499.
  30. Kiryukhantsev-Korneev F.V. // Russ. J. Non-ferrous Metals. 2014. V. 55. P. 494–504. https://doi.org/10.3103/S1067821214050137
  31. Veprek S. et al. // Thin Solid Films. 2005. V. 476. P. 1–29.
  32. Fischer-Cripps A.C. et al. // Surface and Coatings Technology. 2006. V. 200. P. 5645–5654.
  33. Zawischa M., Azri M.M., Supian B.M., Makowski S., Schaller F., Weihnacht V. // Surf. Coat. Technol. 2021. V. 415. P. 127118.
  34. Musil J. // Research signpost. 2008. P. 1–35.
  35. Shtansky D.V. et al. // Phys. Solid State. 2006. V. 48. P. 1301–1308.
  36. Tayebi N., Polycarpou A.A., Conry T.F. // J. Materials Research. 2004. V. 19. P. 1791–1802. https://doi.org/10.1557/JMR.2004.0233
  37. Li J., Beres W. // Canadian Metallurgical Quarterly. 2007. V. 46:2. P. 155–173. https://doi.org/10.1179/cmq.2007.46.2.155
  38. Kiryukhantsev-Korneev P.V., Sheveiko A.N., Petrzhik M.I. // Prot Met Phys Chem Surf. 2019. V. 55. P. 502–510.
  39. Schwarzer N., Duong Q.-H., Bierwisch N., Favaro G., Fuchs M., Kempe P., Widrig B., Ramm J. // Surface and Coatings Technology. 2011. V. 206(6). P. 1327–1335. https://doi.org/10.1016/j.surfcoat.2011.08.051
  40. Leyland A., Matthews A. // Wear. 2000. V. 246. P. 1.
  41. Mustafa M.M.B., Umehara N., Tokoroyama T., Murashima M., Shibata A., Utsumi Y., Moriguchi H. // Tribology Online. 2019. V. 14. № 5. P. 388–397.
  42. Kiryukhantsev-Korneev P.V., Pierson J.F., Bychkova M.Y. et al. // Tribol. Lett. 2016. V. 63. P. 44.
  43. Chen J., Bull S. // J. Physics D: Applied Physics. 2011. V. 44(3). P. 34001.
  44. Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Potanin A.Yu., Vorotilo S.A., Levashov E.A. // Surf. Coat. Technol. 2020. V. 403. P. 126373.
  45. Beake B.D. // Surface and Coatings Technology. 2022. V. 442. P. 128272. https://doi.org/10.1016/j.surfcoat.2022.128272
  46. McMaster S.J., Kosarieh S., Liskiewicz T.W., Neville A., Beake B.D. // Tribology International. 2023. V. 185. P. 108524. https://doi.org/10.1016/j.triboint.2023.108524

© Ф.В. Кирюханцев-Корнеев, Ф.И. Чударин, Р.А. Вахрушев, А.Д. Сытченко, М.И. Карпов, P. Feng, Е.А. Левашов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».