Application of “smart materials” in sample preparation of biological fluids and environmental objects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sample preparation of natural objects requires the development of highly sensitive and selective methods for extracting and concentrating biologically active substances. So-called smart materials, which are selected to solve specific analytical problems, are promising in this area. The review considers the main types of such materials (ionic liquids, eutectic solvents, nanomaterials, organometallic and covalent framework structures, molecularly imprinted polymers), their specific features and specific examples of application in chemical analysis for 2020-2025. The possibilities of using smart materials in the analysis of biological fluids and natural objects, available microextraction approaches and methods for subsequent determination are considered. The achieved advantages over previously proposed approaches are emphasized.

About the authors

D. A. Karpitskiy

Institute of Chemistry, Saint Petersburg State University

Email: karpitskydmitry@gmail.com
Universitetskii pr. 26, Peterhof, Saint Petersburg, Russia

L. A. Kartsova

Institute of Chemistry, Saint Petersburg State University

Universitetskii pr. 26, Peterhof, Saint Petersburg, Russia

References

  1. Martínez-Pérez-Cejuela H., Gionfriddo P., Campíns-­Falcó P., Herrero-Martínez J.M. Green and sustainable evaluation of methods for sample treatment in drug analysis // Green Anal. Chem. 2024. V. 10. Article 100125.
  2. Ražić S., Gadžurić S., Trtić-Petrović T. Ionic liquids in green analytical chemistry – are they that good and green enough? // Anal. Bioanal. Chem. 2024. V. 416. № 9. P. 2023.
  3. Llaver M., Fiorentini E.F., Quintas P.Y., Oviedo M.N., Botella Arenas M.B., Wuilloud R.G. Task-specific ionic liquids: Applications in sample preparation and the chemistry behind their selectivity // Adv. Sample Prep. 2022. V. 1. Article 100004.
  4. Song X., Peng M., Luo Q., Huang X. Task specific microextraction column based on monolith for magnetic field-assisted in-tube solid phase microextraction of vanadium species in complex samples prior to online chromatographic analysis // Talanta. 2024. V. 270. Article 125528.
  5. Bedair A., Hamed M., Mansour F.R. Reshaping capillary electrophoresis with state-of-the art sample preparation materials: Exploring new horizons // Electrophoresis. 2024. Early view.
  6. Sirsi S.R., Borden M.A. State-of-the-art materials for ultrasound-triggered drug delivery // Adv. Drug Deliv. Rev. 2014. V. 72. P. 3.
  7. Treder N., Kowal A., Roszkowska A., Bączek T. A sustainable approach for the determination of pacritinib in biological samples with dispersive liquid-liquid microextraction and using hydrophobic natural deep eutectic solvents // Sustain. Chem. Pharm. 2024. V. 42. Article 101841.
  8. Bi M. Qin Q., Deng B., Chen D. Natural fibers as sustainable and renewable materials for green sample preparation // TrAC, Trends Anal. Chem. 2024. V. 180. Article 117894.
  9. Reja S., Vasudevan S. A Simple Scalable Production Route for Superparamagnetic Ferrite Nanoparticles with Size and Shape Tuneability. Preprint. Cambridge: ChemRxiv, 2024. Ver. 1.
  10. Li J., Xu A., Xue J., Qian W., Xu P., Hu Z., Chen C., Wu C. Development and validation of a deep eutectic solvent-assisted liquid-liquid extraction method for simultaneous quantification of six steroid hormones in serum by liquid chromatography-tandem mass spectrometry // J. Chromatogr. A. 2023. V. 1710. Article 464413.
  11. Prasada Rao T., Daniel S., Mary Gladis J. Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE) // TrAC, Trends Anal. Chem. 2004. V. 23. № 1. P. 28.
  12. José Luis P., Carlos S., Laura Sofía T. Tuneable solvents-based extraction for the recovery of caffeine from coffee wastewater // Environ. Prog. Sustain. Energy. 2024. V. 43. № 2. Article e14291.
  13. Torabi E., Abdar A., Lotfian N., Bazargan M., Simms C., Moussawi M.A., Amiri A., Mirzaei M., Parac-Vogt T.N. Advanced materials in sorbent-based analytical sample preparation // Coord. Chem. Rev. 2024. V. 506. Article 215680.
  14. Chen Y., Xia L., Liang R., Lu Z., Li L., Huo B., Li G., Hu Y. Advanced materials for sample preparation in recent decade // TrAC, Trends Anal. Chem. 2019. V. 120. Article 115652.
  15. Dieu Nguyen L. Hoang Nguyen N., Hoang Ngoc Do M., Thai Nguyen T., Hao Nguyen T., Thien Gia Hua C., Hoang Tran P. Functionalized ionic liquids as an efficient sorbent for solid-phase extraction of tetracyclines in bovine milk // Microchem. J. 2024. V. 204. Article 110999.
  16. Li L., Liu Y., Wang Z., Yang L., Liu H. Development and applications of deep eutectic solvent derived functional materials in chromatographic separation // J. Sep. Sci. 2021. V. 44. № 6. P. 1098.
  17. Armenta S., Esteve-Turrillas F.A., Garrigues S., de la Guardia M. Smart materials for sample preparation in bioanalysis: A green overview // Sustain. Chem. Pharm. 2021. V. 21. Article 100411.
  18. Jawarkar S.G., Pillai M., Chavan P., Sengupta P. Next-generation smart biomaterials for storage and extraction of bioanalytical samples: Current standing and path forward // Microchem. J. 2024. V. 207. Article 111846.
  19. Handbook of Smart Materials in Analytical Chemistry / Eds. de la Guardia M., Esteve-Turrillas F.A. Wiley, 2019.
  20. Li N., Zhang T., Chen G., Xu J., Ouyang G., Zhu F. Recent advances in sample preparation techniques for quantitative detection of pharmaceuticals in biological samples // TrAC, Trends Anal. Chem. 2021. V. 142. Article 116318.
  21. Sajid M. Advances in on-site analytical sample preparation for analysis of environmental waters: A review // Trends Environ. Anal. Chem. 2022. V. 36. Article e00175.
  22. Scanferla D.T.P., Sano Lini R., Marchioni C., Mossini S.A.G. Drugs of abuse: A narrative review of recent trends in biological sample preparation and chromatographic techniques // Forensic Chem. 2022. V. 30. Article 100442.
  23. Chen L., Zhang Y., Zhang Y.-X., Wang W.-L., Sun D.-M., Li P.-Y., Feng X.-S., Tan Y. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring // J. Pharm. Anal. 2024. V. 14. № 4. Article 100899.
  24. Моходоева О.Б., Максимова В.В., Дженлода Р.Х., Шкинев В.М. Модифицированные ионными жидкостями магнитные наночастицы в анализе объектов окружающей среды // Журн. аналит. химии. 2021. Т. 76. № 6. С. 483. (Mokhoedova O.B., Maksimova V.V., Dzhenloda R.K., Shkinev V.M. Magnetic nanoparticles modified by ionic liquids in environmental analysis // J. Anal. Chem. 2021. V. 76. № 6. P. 675.)
  25. Бессонова Е.А., Карпицкий Д.А., Карцова Л.А. Современные подходы к извлечению и концентрированию биологически активных веществ из растительных объектов с применением методом микроэкстракции для их хромато-масс-спектрометрического определения // Журн. аналит. химии. 2023. T. 78. № 10. C. 883. (Bessonova E.A., Karpitskii D.A., Kartsova L.A. Modern approaches to the extraction and preconcentration of biologically active compounds from plant samples by microextraction methods for their determination by chromatography–mass Spectrometry // J. Anal. Chem. 2023. V. 78. № 10. P. 1295.)
  26. Cao Z., Zhou J. Research progress on pretreatment technology for the analysis of amphetamine biological samples // J. Sep. Sci. 2024. V. 47. № 16. Article 2400337.
  27. Lee H.K., Tang S., Dembele F., Basheer C., Alhooshani K., Nuhu A.A., Kanimozhi S. Sample preparation of complex biological samples in the analysis of trace-level contaminants / Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2024.
  28. Lai H., Li G. Recent progress on media for biological sample preparation // J. Chromatogr. A. 2024. V. 1734. Article 465293.
  29. Huang S., Fan M., Wawryk N., Qui J., Yang X., Zhu F., Ouyang G., Li X.-F. Recent advances in sampling and sample preparation for effect-directed environmental analysis // TrAC Trends Anal. Chem. 2022. V. 154. Article 116654.
  30. Lemos A.A., Chapana A.L., Lujan C.E., Botella M.B., Oviedo M.N., Wuilloud R.G. Eco-friendly solvents in liquid–liquid microextraction techniques for biological and environmental analysis: a critical review // Anal. Bioanal. Chem. 2024.V. 417. P. 1239.
  31. Song X., Huang X. Ionic liquids-based adsorbents for extraction and separation: A review emphasizing recent advances in sample preparation // Sep. Purif. Technol. 2025. V. 358. Article 130336.
  32. Feng J., Loussala H.M., Han S., Ji X., Li C., Sun M. Recent advances of ionic liquids in sample preparation // TrAC, Trends Anal. Chem. 2020. V. 125. Article 115833.
  33. Amaral L.R., Gama M.R., Pizzolato T.M. Ionic liquids in dispersive liquid–liquid microextraction for environmental aqueous samples // Microchem. J. 2025. V. 208. Article 112254.
  34. Yao T., Song J., Zhou C., Shi X. Recent progress of the applications of functionalized magnetic ionic liquids in sample pretreatment // Sep. Purif. Technol. 2024. V. 341. Article 126979.
  35. Morovati S., Laijani K., Helalizadeh M., Mohammadkhani L.G., Faraji H. Determination of remdesivir in human plasma using (deep eutectic solvent-ionic liquid) ferrofluid microextraction combined with liquid chromatography // J. Chromatogr. A. 2023. V. 1712. Article 464468.
  36. Arnipalli M.S., Nimmu N.V., Bondigalla R., Challa G.N. Simple and rapid analysis of Linagliptin in dried blood spot using an ionic liquid based vortex-assisted dispersive liquid–liquid microextraction coupled with liquid chromatography–electrospray ionization–tandem mass spectrometry: Application to pharmacok // Sep. Sci. PLUS. 2021. V. 4. № 9. P. 328.
  37. Jouyban A., Nemati M., Farajzadeh M.A., Soleymani J., Afshar Mogaddam M.R. Homogenous dispersive solid phase extraction combined with ionic liquid based-dispersive liquid–liquid microextraction of gentamicin and streptomycin from milk prior to HPLC-MS/MS analysis // J. Iran. Chem. Soc. 2022. V. 19. № 10. P. 4309.
  38. Jorgensen K., Pérez R.L. Extraction of poly aromatic hydrocarbons (PAHs) using magnetic ionic liquids (MILs) as extractive materials from water samples // Sep. Purif. Technol. 2024. V. 345. Article 127370.
  39. Колобова Е.А., Карцова Л.А. Применение дисперсионной жидкостно-жидкостной микроэкстракции с использованием в качестве экстрагента 3-метил-1-октил-имидазолий тетрафторбората для электрофоретического определения стероидных гормонов в образцах мочи // Аналитика и контроль. 2018. Т. 22. № 3. С. 284.
  40. Бессонова Е.А., Деев В.А., Карцова Л.А. Дисперсионная жидкостно-жидкостная микроэкстракция пестицидов с применением в качестве экстрагентов ионных жидкостей // Журн. аналит. химии. 2020. Т. 75. № 8. С. 692. (Bessonova E.A., Deev V.A., Kartsova L.A. Dispersive liquid–liquid microextraction of pesticides using ionic liquids as extractants // J. Anal. Chem. 2020. V. 75. № 8. P. 991.)
  41. Kechagia A., Manousi N., Kabir A., Furton K.G., Zacharis C.K. Fabricating a designer capsule phase microextraction platform based on sol–gel Carbowax 20M-zwitterionic ionic liquid composite sorbent for the extraction of lipid-lowering drugs from human urine samples // Microchim. Acta. 2023. V. 190. № 11. P. 428.
  42. Yohannes A., Feng X., Yao S. Dispersive solid-phase extraction of racemic drugs using chiral ionic liquid-metal-organic framework composite sorbent // J. Chromatogr. A. 2020. V. 1627. Article 461395.
  43. Nguyen T.T., Nguyen T.P., Tran L.N., Huynh T.T.T., Nguyen N.H., Nguyen L.H.T., Le T.T.M., Doan T.L.H., Nguyen M.A., Tran P.H. DABCOnium ionic liquid-immobilized silica gel for solid phase extraction of phenoxyacetic acid herbicides in water samples // ChemistrySelect. 2022. V. 7. № 46. Article e202203526.
  44. Chen R., Zhang X., Liu F., Liu C., Peng Q., Qiao X. Theoretical design and preparation of ionic liquid-based magnetic nanoparticles for the magnetic dispersive solid-phase extraction of benzimidazoles in human plasma // Sep. Purif. Technol. 2022. V. 302. Article 122150.
  45. Zhu C., Wang Z., Ma R., Wu W., Dong M., Chen X., Du Y., Tang D., Ji S. Selective enrichment of licorice triterpenoid saponins from complicated samples by magnetic poly(ionic liquid)-functionalized metal-organic framework // LWT – Food Sci. Technol. 2023. V. 185. Article 115143.
  46. Ghajar M., Soleimani M., Aflatouni F. Selective and fast determination of fluoroquinolone antibiotics in real samples using polymerized ionic liquid-modified magnetic nano adsorbent // J. Anal. Chem. 2023. V. 78. № 10. P. 1378.
  47. Feng J., Wang X., Tian Y., Luo C., Sun M. Basalt fibers grafted with a poly(ionic liquids) coating for in-tube solid-phase microextraction // J. Sep. Sci. 2018. V. 41. № 16. P. 3267.
  48. Chen L., Pei J., Huang X., Lu M. Polymeric ionic liquid-based portable tip microextraction device for on-site sample preparation of water samples // J. Chromatogr. A. 2018. V. 1564. P. 34.
  49. Ramalingam L.P., Ramalingam B., Rathnasamy S., Kathirvelu P. Deep eutectic solvent-based sustainable electrochemical lithium batteries – Prospects, challenges, and life cycle engineering // Sustain. Energy Technol. Assess. 2025. V. 73. Article 104136.
  50. Li P., Li T., Wu S. Process parameters and product characterization for efficient extraction of lignin with deep eutectic solvents: A review // Int. J. Biol. Macromol. 2024. V. 280. Article 136053.
  51. Sugiarto S., Aloka Weerasinghe U., Kinyanjui Muiruri J., Yu Qing Chai A., Chee Chuan Yeo J., Wang G., Zhu Q., Jun Loh X., Li Z., Kai D. Nanomaterial synthesis in deep eutectic solvents // Chem. Eng. J. 2024. V. 499. Article 156177.
  52. Sharma A., Park Y.R., Garg A., Lee B.-S. Deep eutectic solvents enhancing drug solubility and its delivery // J. Med. Chem. 2024. V. 67. № 17. P. 14807.
  53. Zhou D., Chen X., Li G., Zhao M., Li D. Effect of deep eutectic solvents on activity, stability, and selectivity of enzymes: Novel insights and further prospects // Int. J. Biol. Macromol. 2025. V. 284. Article 138148.
  54. de-la-Huerta-Sainz S., Escobedo-Monge M.A., Marcos P.A., Esteban-Ollo J.A., Montejo-Gil, Conde-Rioll M., Atilhan M., Bol A., Aparicio S. Nature’s tool kit: Designing biocompatible and affordable NADES for sustainable extraction of plant bioactives // Sustain. Chem. One World. 2025. V. 5. Article 100043.
  55. Heck K.L., Si L., Jung D.J., Calderón A.I. Application of eco-friendly natural deep eutectic solvents (NADES) in HPLC for separation of complex natural products: Current limitations and future directions // J. Pharm. Biomed. Anal. 2024. V. 244. Article 116102.
  56. Pereira T.C., Souza V.P., Padilha A.P.F., Duarte F.A., Flores E.M. Trends and perspectives on the ultrasound-assisted extraction of bioactive compounds using natural deep eutectic solvents // Curr. Opin. Chem. Eng. 2025. V. 47. Article 101088.
  57. Mansour F.R., Bedair A., Hamed M., Magdy G., Ali I., Locatelli M. Applications of (natural) deep eutectic solvents in liquid phase microextraction: A review // Microchem. J. 2024. V. 198. Article 110178.
  58. Abranches D.O., Coutinho J.A.P. Type V deep eutectic solvents: Design and applications // Curr. Opin. Green Sustain. Chem. 2022. V. 35. Article 100612.
  59. Rafati S., Ebrahimi N., Sadeghi R. New family of type V natural hydrophobic deep eutectic solvents based on thymol-acetamide/acetanilide: Characteristics, intermolecular interactions and applications in liquid–liquid extraction // Sep. Purif. Technol. 2025. V. 359. Article 130583.
  60. Alomari N., Al-Bodour A., Khai Liew S., Gutiérrez A., Aparicio S., Atilhan M. Exploiting monoterpenoids in type V deep eutectic solvents: A combined high-pressure experiments and theoretical approach for enhanced carbon dioxide and nitrogen absorption // J. Mol. Liq. 2023. V. 391. Article 123267.
  61. Kaçanbüre D., Bişgin A.T. Selective microextraction of erythrosine (E127) in foodstuffs using a new generation high-density type-V deep eutectic solvent // Food Chem. 2025. V. 463. Article 141273.
  62. Chen Q., Wang Z., Chen H. A hydrophobic deep eutectic solvent-based vortex-assisted liquid-liquid microextraction applied for doping control of aromatase inhibitors from equine urine // J. Pharm. Biomed. Anal. 2023. V. 234. Article 115583.
  63. Feng Q., Tong L., Guo H., Ma C., Qin F., Xiong Z. Tailor-made deep eutectic solvents extraction combined with UPLC-MS/MS determination of icarrin and icarisid II in rat plasma and its comparative pharmacokinetic application // J. Pharm. Biomed. Anal. 2021. V. 199. Article 114054.
  64. García-Atienza P., Martínez-Pérez-Cejuela H., Manuel Herrero-Martínez J., Armenta S. Liquid phase microextraction based on natural deep eutectic solvents of psychoactive substances from biological fluids and natural waters // Talanta. 2024. V. 267. Article 125277.
  65. Binjawhar D.N., Mohammedsaeed W. pH-switchable hydrophobic deep eutectic solvent-based liquid phase microextraction for detecting morphine and codeine in whole blood samples followed by HPLC-UV // J. King Saud Univ. – Sci. 2024. V. 36. № 8. Article 103303.
  66. Hu X., Zhang L., Xia H., Peng M., Zhou Y., Xu Z., Peng X. Dispersive liquid‐liquid microextraction based on a new hydrophobic deep eutectic solvent for the determination of phenolic compounds in environmental water samples // J. Sep. Sci. 2021. V. 44. № 7. P. 1510.
  67. Salamat Q., Soylak M. Novel reusable and switchable deep eutectic solvent for extraction and determination of curcumin in water and food samples // Talanta. 2024. V. 269. Article 125401.
  68. Moradi M., Ferreira A.M., Neves C.M.S.S., Mahmoudabadi S.Z., Pazuki G., Coutinho J.A.P. Extraction of ofloxacin from water using hydrophobic eutectic solvents // J. Environ. Chem. Eng. 2024. V. 12. № 3. Article 113075.
  69. Shishov A., Pochivalov A., Nugbienyo L., Andruch V., Bulatov A. Deep eutectic solvents are not only effective extractants // TrAC, Trends Anal. Chem. 2020. V. 129. Article 115956.
  70. Hoseinzadeh A., Heidari H., Abbas Matin A., Soylak M. Multi-response optimization of a deep eutectic solvent-based microextraction method for the simultaneous extraction of twenty organochlorine pesticides for monitoring in various water samples // Microchem. J. 2023. V. 194. Article 109226.
  71. Sereshti H., Zarei-Hosseinabadi M., Soltani S., Jamshidi F., Shojaee AliAbadi M.H. Hydrophobic liquid-polymer-based deep eutectic solvent for extraction and multi-residue analysis of pesticides in water samples // Microchem. J. 2021. V. 167. Article 106314.
  72. Ezoddin M. Naraki K., Abdi K., Rahimi Kakavandi N., Ghazi-Khansari M., Javadi M. H. S., Pirooznia N. Deep eutectic solvent as the acceptor phase in three-phase hollow fiber liquid-phase microextraction for the determination of pyrethroid insecticides from environmental water samples prior to HPLC // Biomed. Chromatogr. 2022. V. 36. № 11. Article e5461.
  73. Yang L., Wang S., Xie Z., Xing R., Wang R., Chen X., Hu S. Deep eutectic solvent – loaded Fe3O4@MIL-101(Cr) with core–shell structure for the magnetic solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water samples // Microchem. J. 2023. V. 184. Article 108150.
  74. Raisi L., Hashemi S.H., Jamali Keikha A., Kaykhaii M. Application of a novel deep eutectic solvent modified carbon nanotube for pipette-tip micro solid phase extraction of 6-mercaptopurine // BMC Chem. 2024. V. 18. № 1. P. 81.
  75. Shishov A.Yu., Israelyan D., Bulatov A.V. Automated deep eutectic solvent-based chromatomembrane microextraction: Separation and preconcentration of bisphenols from aqueous samples // Sep. Purif. Technol. 2024. Vol. 338. Article. 126480.
  76. Karpitskiy D.A., Bessonova E.A., Shishov A.Y., Kartsova L.A. Selective extraction of plant bioactive compounds with deep eutectic solvents: Iris sibirica L. as example // Phytochem. Anal. 2024. V. 35. № 1. P. 53.
  77. Karpitskiy D.A., Bessonova E.A., Shishov A.Y., Kartsova L.A. Handshake of deep eutectic solvent and ionic liquid: Two liquid-liquid microextraction procedures for plant analysis // Talanta. 2025. V. 282. Article 126947.
  78. Galiyeva A., Daribay A., Zhumagaliyeva T., Zhaparova L., Sadyrbekov D., Tazhbayev Y. Human Serum Albumin Nanoparticles: Synthesis, Optimization and Immobilization with Antituberculosis Drugs // Polymers (Basel). 2023. V. 15. № 13. P. 2774.
  79. Yadav K. K., Ebenezer Gnanakani S.P., Kumar Sahu K., Sucheta, Dubey A., Minz S., Raza W., Pradhan M. Unleashing the potential of natural protein based nanoparticles for the delivery of therapeutic nucleic acid: A comprehensive review // Int. J. Pharm. 2025. V. 669. Article 125049.
  80. Gong H., Fu H., Zhang J., Zhang Q., Wang Y., Wang D., Cai L., Chen J., Yu H., Lyu B. Preparation of soybean protein-based nanoparticles and its application as encapsulation carriers of bioactive substances // LWT – Food Sci. Technol. 2024. V. 191. Article 115680.
  81. Naik G. alias R.R., Roy A.A., Mutalik S., Dhas N. Unleashing the power of polymeric nanoparticles – Creative triumph against antibiotic resistance: A review // Int. J. Biol. Macromol. 2024. V. 278. Article 134977.
  82. Lhotská I., Kholová A., Švec F., Šatínský D. Nanofibers prepared from synthetic polymers and biopolymers as advanced extraction materials for sample preparation prior to liquid chromatography // TrAC, Trends Anal. Chem. 2024. V. 180. Article 117912.
  83. Perumal S. Polymer Nanoparticles: Synthesis and Applications // Polymers (Basel). 2022. V. 14. № 24. P. 5449.
  84. Hassan B., Hadi H. Magnetic nanoparticles and cationic surfactants for the extraction and determination of phenolic compounds in environmental and biological samples // Green Anal. Chem. 2023. V. 6. Article 100064.
  85. Егунова О.Р., Решетникова И.С., Казимирова К.О., Штыков С.Н. Магнитная твердофазная экстракция и флуориметрическое определение некоторых фторхинолонов // Журн. аналит. химии. 2020. Т. 75. № 1. С. 31. (Egunova O.P., Reshetnikova I.S., Kazimirova K.O., Shtykov S.N. Magnetic solid-phase extraction and fluorimetric determination of some fluoroquinolones // J. Anal. Chem. 2020. V. 75. № 1. P. 24.)
  86. Wang M., Chen Z., Jing X., Zhou H., Wang Y., Ye J., Chu Q. Tween 20-capped gold nanoparticles for selective extraction of free low-molecular-weight thiols in saliva followed by capillary electrophoresis with contactless conductivity detection // J. Chromatogr. B. 2021. V. 1176. Article 122756.
  87. Hoseininezhad-Namin M.S., Ozkan S.A., Rahimpour E., Jouyban A. Development of a β-cyclodextrin-modified gold nanoparticle-assisted electromembrane extraction method followed by capillary electrophoresis for methadone determination in plasma // RSC Adv. 2022. V. 12. № 52. P. 33936.
  88. Muniandy Y., Mohamad S., Raoov M. Green and efficient magnetic micro-solid phase extraction utilizing tea waste impregnated with magnetic nanoparticles for the analysis of ibuprofen in water samples by using UV-vis spectrophotometry // RSC Adv. 2024. V. 14. № 17. P. 11977.
  89. Torres-Cartas S., Meseguer-Lloret S., Catalá-Icardo M., Francisco Simó-Alfonso E., Manuel Herrero-Martínez J. Aptamer-modified magnetic nanoparticles for extraction of atrazine in environmental water samples // Microchem. J. 2023. V. 191. Article 108902.
  90. Губин А.С., Суханов П.Т., Кушнир А.А. Применение композита на основе наночастиц магнетита, оксида графена и ионной жидкости для извлечения бисфенола А из донных отложений методом матричного твердофазного диспергирования // Журн. аналит. химии. 2024. Т. 79. № 9. С. 1016. (Gubin A.S., Sukhanov P.T., Kushnir A.A. Application of a composite based on magnetite nanoparticles, graphene oxide, and an ionic liquid for the extraction of bisphenol A from bottom sediments by the matrix solid-phase dispersion method // J. Anal. Chem. 2024. V. 79. № 9. P. 1277.)
  91. Darvishnejad F., Raoof J.B., Ghani M. In-situ synthesis of nanocubic cobalt oxide @ graphene oxide nanocomposite reinforced hollow fiber-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from human urine prior to their quantification via high-performance liqu // J. Chromatogr. A. 2021. V. 1641. Article 461984.
  92. Гончаров Н.О., Толмачева В.В., Лазаревич Т.В., Мелехин А.О., Пурыскин И.Д., Апяри В.В., Дмитриенко С.Г. Магнитная твердофазная экстракция с диспергированием сверхсшитого полистирола углекислым газом для выделения амфениколов из меда и молока при их определении методом ВЭЖХ-МС/МС // Журн. аналит. химии. 2024. Т. 79. № 9. С. 1028. (Goncharov N.O., Tolmacheva V.V., Lazarevich T.V., Melekhin A.O., Puryskin I.D., Apyari V.V., Dmitrienko S.G. Magnetic solid-phase extraction with dispersion of magnetic hypercrosslinked polystyrene by carbon dioxide for the extraction of amphenicols from honey and milk in their determination by HPLC–MS/MS // J. Anal. Chem. 2024. V. 79. № 9. P. 1296.)
  93. Zhou P., Deng Y., Lyu B., Zhang R., Zhang H., Ma H., Lyu Y., Wei S. Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: Formation, characterization and biofunctional evaluation // PLoS One 2014. V. 9. № 11. Article e113087.
  94. Eren E.D., Guisong G., Mingming L., Bingchun Z., Ke Y., Shanshan C. A novel chitosan and polydopamine interlinked bioactive coating for metallic biomaterials // J. Mater. Sci. Mater. Med. 2022. V. 33. № 10. P. 65.
  95. Hemmatpour H., De Luca O., Crestani D., Stuart M.C.A., Lasorsa A. van der Wel P.C.A., Loos K., Giousis T., Haddadi-Asl V., Rudolf P. New insights in polydopamine formation via surface adsorption // Nat. Commun. 2023. V. 14. № 1. P. 664.
  96. Siciliano G., Monteduro A.G., Turco A., Primiceri E., Rizzato S., Depalo N., Curri M.L., Maruccio G. Polydopamine-coated magnetic iron oxide nanoparticles: From design to applications // Nanomaterials. 2022. V. 12. № 7. P. 1145.
  97. Ball V. Polydopamine nanomaterials: Recent advances in synthesis methods and applications // Front. Bioeng. Biotechnol. 2018. V. 6. Article 109.
  98. Battaglini M., Emanet M., Carmignani A., Ciofani G. Polydopamine-based nanostructures: A new generation of versatile, multi-tasking, and smart theranostic tools // Nano Today. 2024. V. 55. Article 102151.
  99. Grau J., Benedé J.L., Chisvert A. Polydopamine-coated magnetic nanoparticles for the determination of nitro musks in environmental water samples by stir bar sorptive-dispersive microextraction // Talanta. 2021. V. 231. Article 122375.
  100. Pérez-Baeza M., Escuder-Gilabert L., Martín-Biosca Y., Sagrado S., Medina-Hernández M.J. Potential of sodium dodecyl sulfate micellar solutions as eluents in magnetic dispersive micro-solid phase extraction with polydopamine-coated magnetite nanoparticles. Application to antidepressant drugs // J. Chromatogr. A. 2022. V. 1680. Article 463430.
  101. Zhao N., Liu S., Xing J., Pi Z., Song F., Liu Z. Trace determination and characterization of ginsenosides in rat plasma through magnetic dispersive solid-phase extraction based on core-shell polydopamine-coated magnetic nanoparticles // J. Pharm. Anal. 2020. V. 10. № 1. P. 86.
  102. Ye P., Yu L., Guo J., Yao M., Qiu J., Chen G., Xu J., Zhu F., Ouyang G. Green determination of glucocorticoids in water environment based on novel polydopamine coated iron tetroxide via magnetic dispersive solid phase microextraction // Green Anal. Chem. 2024. V. 10. Article 100136.
  103. Zhou D.-D., Zhang Q., Zhang H., Wang Y.-Z., Yang F.-Q. Wang S.-P., Wang Y.-T. Cupric ion functionalized polydopamine coated magnetic microspheres as solid-phase adsorbent for the extraction of purines in plasma // J. Chromatogr. B. 2019. V. 1120. P. 95.
  104. Mohyuddin A., Hussain D., Najam-ul-Haq M. Polydopamine assisted functionalization of boronic acid on magnetic nanoparticles for the selective extraction of ribosylated metabolites from urine // RSC Adv. 2017. V. 7. № 16. P. 9476.
  105. Chen S., Qie Y., Hua Z., Zhang H., Wang Y., Di B., Su M. Preparation of poly(methacrylic acid-co-ethylene glycol dimethacrylate)-functionalized magnetic polydopamine nanoparticles for the extraction of six cannabinoids in wastewater followed by UHPLC-MS/MS // Talanta. 2023. V. 264. Article 124752.
  106. Wang D.-D., Lu Z.-H., Guan X., Yang M.-N.O., Guo H.-M., Yang Z.-H. Magnetic polydopamine modified with choline-based deep eutectic solvent for the magnetic solid-phase extraction of sulfonylurea herbicides in water samples // J. Chromatogr. Sci. 2021. V. 59. № 1. P. 95.
  107. Pan T., Lin Y., Wu Q., Huang K., He J. Preparation of boronate‐functionalized surface molecularly imprinted polymer microspheres with polydopamine coating for specific recognition and separation of glycoside template // J. Sep. Sci. 2021. V. 44. № 12. P. 2465.
  108. Tan F., Liu M., Ren S. Preparation of polydopamine-coated graphene oxide/Fe3O4 imprinted nanoparticles for selective removal of fluoroquinolone antibiotics in water // Sci. Rep. 2017. V. 7. № 1. P. 5735.
  109. Hu M., Huang P., Suo L., Wu F. Polydopamine-based molecularly imprinting polymers on magnetic nanoparticles for recognition and enrichment of ochratoxins prior to their determination by HPLC // Microchim. Acta. 2018. V. 185. № 6. P. 300.
  110. Lin L., Guo H., Lin S., Chen Y., Yan L., Zhu E., Li K. Selective extraction of perfluorooctane sulfonate in real samples by superparamagnetic nanospheres coated with a polydopamine-based molecularly imprinted polymer // J. Sep. Sci. 2021. V. 44. № 5. P. 1015.
  111. Yarman A., Oktay A., Toksoy M.I., de Souza S.F., Ameixa J., Bald I., Ustundag C.B., Scheller F.W. Spotlights of MIP-sensors for drugs and protein biomarkers // J. Pharm. Biomed. Anal. Open. 2025. V. 5. Article 100048.
  112. Gkika D.A., Tolkou A.K., Lambropoulou D.A., Bikiaris D.N., Kokkinos P., Kalavrouziotis I.K., Kyzas G.Z. Application of molecularly imprinted polymers (MIPs) as environmental separation tools // RSC Appl. Polym. 2024. V. 2. № 2. P. 127.
  113. Li Y., Guan C., Liu C., Li Z., Han G. Disease diagnosis and application analysis of molecularly imprinted polymers (MIPs) in saliva detection // Talanta. 2024. V. 269. Article 125394.
  114. Geng L., Huang J., Fang M., Wang H., Liu J., Wang G., Hu M., Sun J., Guo Y., Sun X. Recent progress of the research of metal-organic frameworks-molecularly imprinted polymers (MOFs-MIPs) in food safety detection field // Food Chem. 2024. V. 458. Article 140330.
  115. Zeb S., Wong A., Khan S., Hussain S., Sotomayor M.D.P.T. Synthesis and Characterization of a Magnetic Molecular Imprinted Polymer for Tetracycline Quantification in Food Samples // ChemistrySelect. 2024. V. 9. № 19. Article e202400346.
  116. Jyoti, Gonzato C., Żołek T., Maciejewska D., Kutner A., Merlier F., Haupt K., Sharma P.S., Noworyta K.R., Kutner W. Molecularly imprinted polymer nanoparticles-based electrochemical chemosensors for selective determination of cilostazol and its pharmacologically active primary metabolite in human plasma // Biosens. Bioelectron. 2021. V. 193. Article 113542.
  117. Megias-Pérez E., Giménez-López J., Lascorz A., Benedetti B., Minguillón C., Barrón D. Development of molecularly imprinted polymers and its magnetic version for the extraction of fluoroquinolones from milk // Microchem. J. 2023. V. 195. Article 109422.
  118. Li H., Zhou X. Solid-phase extraction of stanozolol abuse in athletes using a novel magnetic molecularly imprinted polymer sorbent // Alexandria Eng. J. 2025. V. 116. P. 55.
  119. Zamruddin N.M., Herman H., Asman S., Hasa­nah A.N. Synthesis and characterization of magnetic molecularly imprinted polymers for the rapid and selective determination of clofazimine in blood plasma samples // Heliyon. 2024. V. 10. № 13. Article e33396.
  120. de Paula D.D.M., Santos da Silva R.C., Dinali L.A.F., Silva C.F., de Oliveira M.A.L., Pereira A.C., Borges K.B. Magnetic solid phase extraction based on restricted access molecularly imprinted polymer with dually coated for enantioselective determination of tramadol in human plasma by capillary electrophoresis with ultraviolet detection // Talanta. 2025. V. 288. Article 127676.
  121. Губин А.С., Кушнир А.А., Суханов П.Т. Сорбционное концентрирование фенолов из водных сред магнитными молекулярно импринтированными полимерами на основе N-винилпирролидона // Сорбционные и хроматографические процессы. 2021. Т. 21. № 3. С. 326.
  122. Губин А.С., Суханов П.Т., Кушнир А.А., Шихалиев Х.С., Потапов М.А. Применение магнитных сорбентов, модифицированных молекулярно импринтированными полимерами, для скринига фенольных ксеноэстрогенов // Аналитика и контроль. 2023. Т. 27. № 1. С. 32.
  123. Abedi H., Roostaie A. Magnetic molecularly imprinted polymer for trace pharmaceutical analysis: Preconcentration and the electrochemical determination of sufentanil in biological fluids // Vietnam J. Chem. 2023. V. 61. № 3. P. 383.
  124. Turiel E., Díaz-Álvarez M., Martín‐Esteban A. Surface modified-magnetic nanoparticles by molecular imprinting for the dispersive solid-phase extraction of triazines from environmental waters // J. Sep. Sci. 2020. V. 43. № 16. P. 3304.
  125. Liu Y., Li P., Cui R., Qin C., Wu L., Zhang X., Li B., Ping J., Wang Y., Pan J., Ying Y., Li D., Shi D., Xu L. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs)-based prototyping of integrated sensing devices for robust analysis // TrAC, Trends Anal. Chem. 2024. V. 174. Article 117678.
  126. Ma M., Lu X., Guo Y., Wang L., Liang X. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites // TrAC, Trends Anal. Chem. 2022. V. 157. Article 116741.
  127. Goswami L., Kushwaha A., Shabbir M., Dikshit P.K., Oh S., Bhan U. Covalent organic frameworks (COFs) and COFs-based hybrid architectonics: A promising material platform for organic micropollutants detection and removal from wastewater // Coord. Chem. Rev. 2025. V. 527. Article 216398.
  128. Hu K., Chen L., Gao S., Liu W., Wei B., He Q. Application progress of covalent organic frameworks (COFs) materials in the detection of food contaminants // Food Control. 2024. V. 155. Article 110072.
  129. Takhvar A., Akbari S., Souri E., Ahmadkhaniha R., Morsali A., Khoshayand M.R., Amini M., Taher A. Dispersive micro-solid phase extraction based on two MOFs as highly effective adsorbents for analysis of nilotinib in plasma and wastewater // DARU J. Pharm. Sci. 2024. V. 32. № 2. P. 617.
  130. Jiang X.-X., Yu L.-Q., Sun Y.-N., Li Y., Li H.-M., Lv Y.-K. Hollow zeolitic imidazolate framework-7 coated stainless steel fiber for solid phase microextraction of volatile biomarkers in headspace gas of breast cancer cell lines // Anal. Chim. Acta. 2021. V. 1181. Article 338901.
  131. Bahiraee Z., Fathi S., Safari M. Facile synthesis of Fe3O4 @ TMU-12 (Co-based magnetic MOF) for extraction of diazinon and chlorpyrifos from the environmental water samples // Environ. Prog. Sustain. Energy. 2023. V. 42. № 1. Article e13971.
  132. Zhang H., Hu X., Xia H., Zhou Y., Peng L., Wu J., Peng X. Amine-functionalized MIL-101(Fe) for highly selective and efficient extraction of phenoxy carboxylic acid herbicides from environmental water and rice samples // Chem. Pap. 2022. V. 76. № 7. P. 4379.
  133. Zatrochová S., Martínez-Pérez-Cejuela H., Catalá-Icardo M., Simó-Alfonso E.F., Lhotská I., Šatínský D., Herrero-Martínez J.M. Development of hybrid monoliths incorporating metal–organic frameworks for stir bar sorptive extraction coupled with liquid chromatography for determination of estrogen endocrine disruptors in water and human urine samples // Microchim. Acta. 2022. V. 189. № 3. P. 92.
  134. Khoubi J., Ghiasvand A., Bahrami A., Shahna F.G., Farhadian M. An amide-based covalent organic framework chemically anchored on silica nanoparticles for headspace microextraction sampling of halogenated hydrocarbons in air // J. Chromatogr. A. 2024. V. 1736. Article 465387.
  135. Li Y., Dong G., Li J., Xiang J., Yuan J., Wang H., Wang X. A solid-phase microextraction fiber coating based on magnetic covalent organic framework for highly efficient extraction of triclosan and methyltriclosan in environmental water and human urine samples // Ecotoxicol. Environ. Saf. 2021. V. 219. Article 112319.
  136. Shi P., Xia B., Qin Y., Zhou Y. Removal of multiple lipids from human plasma using a hydroxyl-functionalized covalent organic framework aerogel as a new sorbent // Microchim. Acta. 2023. V. 190. № 6. P. 222.
  137. Li Q., Zhu S., Wu F., Chen F., Guo C. Slice-layer COFs-aerogel: a regenerative dispersive solid-phase extraction adsorbent for determination of ultra-trace quinolone antibiotics // Microchim. Acta. 2023. V. 190. № 9. P. 369.
  138. Fresco-Cala B., Gálvez-Vergara A., Cárdenas S. Magnetic hydrophobic solids prepared from Pickering emulsions for the extraction of polycyclic aromatic hydrocarbons from chamomile tea // Talanta. 2021. V. 224. Article 121915.
  139. Durgut E., Claeyssens F. Pickering polymerized high internal phase emulsions: Fundamentals to advanced applications // Adv. Colloid Interface Sci. 2025. V. 336. Article 103375.
  140. Xu X., Hu J., Xue H., Hu Y., Liu Y., Lin G., Liu L., Xu R. Applications of human and bovine serum albumins in biomedical engineering: A review // Int. J. Biol. Macromol. 2023. V. 253. Article 126914.
  141. Naveenraj S., Anandan S. Binding of serum albumins with bioactive substances – Nanoparticles to drugs // J. Photochem. Photobiol. C Photochem. Rev. 2013. V. 14. P. 53.
  142. Zhao Q., Gao C., Zhang Y., Zhang Y. Advances and application potential in the research of silicate mineral-based 3D printing materials // Prog. Mater. Sci. 2025. Article 101450.
  143. Hernandez-Tenorio F., Múnera-Gutiérrez E., Miranda A.M., Sáez A.A., Marín-Palacio L.D., Giraldo-Estrada C. 3D printing of polysaccharide-based formulations: Opportunities for innovation // Bioprinting. 2025. V. 45. Article e00383.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».