Sorbent materials for preconcentration of platinum group metals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sorption methods, including solid-phase extraction, are widely used for the determination of platinum group metals (PGMs), which is confirmed by a permanently large number of publications. This review is devoted to the description of different types of sorbents developed for the preconcentration and selective recovery of PGMs, and their use in the analysis of geological, natural, and technological samples. Trends in the design materials and physical fields to intensify solid-phase extraction processes for PGMs are discussed. The review considers publications mainly for 2010–2025.

About the authors

V. V. Maksimova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: valeriyamaksimova6@gmail.com
Kosygina St., 19, Moscow, 119991, Russia

T. A. Maryutina

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: valeriyamaksimova6@gmail.com
Kosygina St., 19, Moscow, 119991, Russia

O. B. Mokhodoeva

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: valeriyamaksimova6@gmail.com
Kosygina St., 19, Moscow, 119991, Russia

References

  1. Hughes A.E., Haque N., Northey S.A., Giddey S. Platinum group metals: A review of resources, production and usage with a focus on catalysts // Resources. 2021. V. 10. № 9. Article 93.
  2. MacDonald L., Zhang D., Karamalidis A. Platinum group metals: Key solid phase adsorption technologies for separation from primary and secondary sources // Resour. Conserv. Recycl. 2024. V. 205. Article 107590.
  3. Pawlak J., Lodyga-Chruścińska E., Chrustowicz J. Fate of platinum metals in the environment // J. Trace Elem. Med. Biol. 2014. V. 28. № 3. P. 247.
  4. Komendova R. Recent advances in the preconcentration and determination of platinum group metals in environmental and biological samples // TrAC, Trends Anal. Chem. 2020. V. 122. Article 115708.
  5. Гребнева-Балюк О.Н., Кубракова И.В. Определение элементов платиновой группы в геологических объектах методом масс-спектрометрии с индуктивно связанной плазмой: возможности и ограничения // Журн. аналит. химии. 2020. Т. 75. № 3. С. 195. (Grebneva-Balyuk O.N., Kubrakova I.V. Determination of platinum group elements in geological samples by inductively coupled plasma mass spectrometry: Possibilities and limitations // J. Anal. Chem. 2020. V. 75. № 3. P. 275.)
  6. Myasoedova G.V., Mokhodoeva O.B., Kubrakova I.V. Trends in sorption preconcentration combined with noble metal determination // Anal. Sci. 2007. V. 23. № 9. P. 1031.
  7. Bencs L., Ravindra K., Van Grieken R. Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters // Spectrochim. Acta B: At. Spectrosc. 2003. V. 58. № 10. P. 1723.
  8. Кубракова И.В., Набиуллина С.Н., Тютюнник О.А. Определение ЭПГ и золота в геохимических объектах: опыт использования спектрометрических методов // Геохимия. 2020. Т. 65. № 4. С. 328. (Kubrakova I.V., Nabiullina S.N., Tyutyunnik O.A. Au and PGE determination in geochemistry materials: experience in applying spectrometric techniques // Geochemistry International. 2020. Т. 58. № 4. P. 377.)
  9. Бимиш Ф. Аналитическая химия благородных металлов. М: Мир, 1969. Ч. 1. С. 297. (Beamish F.E. The Analytical Chemistry of the Noble Metals. New York: Pergamon, 1966.)
  10. Kolarik Z., Renard E.V. Recovery of value fission platinoids from spent nuclear fuel // Platinum Metals Rev. 2003. V. 47. P. 74.
  11. Zheng H., Ding Y., Wen Q., Liu B., Zhang S. Separation and purification of platinum group metals from aqueous solution: Recent developments and industrial applications // Resour. Conserv. Recycl. 2021. V. 167. Article 105417.
  12. Моходоева О.Б., Мясоедова Г.В., Кубракова И.В. Сорбционное концентрирование в комбинированных методах определения металлов // Журн. аналит. химии. 2007. T. 62. № 7. С. 679. (Mokhodoeva O.B., Myasoedova G.V., Kubrakova I.V. Sorption preconcentration in combined methods for the determination of noble metals // J. Anal. Chem. 2007. V. 62. № 7. P. 607.)
  13. Hubicki Z., Wawrzkiewicz M., Wójcik G., Dorota K., Wołowicz A. Ch. 1 – Ion exchange method for removal and separation of noble metal ions / Ion Exchange – Studies and Applications / Ed. Kilislioglu A. IntechOpen, 2015. http://dx.doi.org/10.5772/60597
  14. Jha M.K., Gupta D., Lee J.C., Kumar V., Jeong J. Solvent extraction of platinum using amine based extractants in different solutions: A review // Hydrometallurgy. 2014. V. 142. P. 60.
  15. Lee J., Kurniawan, Hong H.J., Chung K.W., Kim S. Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review // Sep. Purif. Technol. 2020. V. 246. Article 116896.
  16. Nikoloski A., Ang K., Li D. Recovery of platinum, palladium and rhodium from acidic chloride leach solution using ion exchange resins // Hydrometallurgy. 2015. V. 152. P. 20.
  17. Petrov G., Zotova I., Nikitina T., Fokina S. Sorption recovery of platinum metals from production solutions of sulfate-chloride leaching of chromite wastes // Metals. 2021. V. 11. № 4. P. 569.
  18. Shen S., Pan T., Liu X., Yuan L., Zhang Y., Wang J., Guo Z. Adsorption of Pd(II) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J // J. Colloid Sci. 2010. V. 345. № 1. P. 12.
  19. Wołowicz A., Hubicki Z. Investigation of macroporous weakly basic anion exchangers applicability in palladium(II) removal from acidic solutions – batch and column studies // J. Chem. Eng. 2011. V. 174. № 2–3. P. 510.
  20. Дрогобужская С.В., Широкая А.А., Соловьев С.А. Сорбционное извлечение платиновых металлов из кислых хлоридно-сульфатных и сульфатных растворов волокнами ФИБАН // Изв. Вузов. Химия и хим. технология. 2019. Т. 62. № 11. С. 117. (Drogobuzhskaya S.V., Shirokaya A.A., Solov'ev S.A. Sorption extraction of platinum metals from chloride-sulfate and sulfate acidic solutions by polyacrylonitrile fibers fiban // ChemChemTech. 2019. V. 62. № 11. P. 117.)
  21. Nagireddi S. Effect of cetrimonium bromide (CTAB) surfactant on Pd(II) removal efficiency from electroless plating solutions // Mater. Today Proc. 2022. V. 68. P. 830.
  22. Dobrowolski R., Mróz A., Cejner M. The enrichment of Pt(IV) ions on Dowex-1X8 and Purolite S-920 ion exchangers from aqueous solutions and their determination using slurry sampling and direct solid sampling graphite furnace atomic absorption spectrometry techniques // Anal. Methods. 2016. V. 8. № 29. P. 5818.
  23. Biswas F., Rahman I., Nakakubo K., Yunoshita K., Endo M., Mashio A., Taniguchi T., Nishimura T., Maeda K., Hasegawa H. Comparative evaluation of dithiocarbamate-modified cellulose and commercial resins for recovery of precious metals from aqueous matrices // J. Hazard. Mater. 2021. V. 418. Article 126308.
  24. Kononova O., Melnikov A., Borisova T., Krylov A. Simultaneous ion exchange recovery of platinum and rhodium from chloride solutions // Hydrometallurgy. 2011. V. 105. № 3–4. P. 341.
  25. Sun P., Lee J., Lee M. Separation of platinum(IV) and rhodium(III) from acidic chloride solution by ion exchange with anion resins // Hydrometallurgy. 2012. V. № 113–114. P. 200.
  26. Wołowicz A., Hubicki Z. Comparison of strongly basic anion exchange resins applicability for the removal of palladium(II) ions from acidic solutions // J. Chem. Eng. 2011. V. 171. № 1. P. 206.
  27. Kabay N., Cortina J.L., Trochimczuk A., Streat M. Solvent-impregnated resins (SIRs) – Methods of preparation and their applications // React. Funct. Polym. 2010. V. 70. № 8. P. 484.
  28. Wu F., Yang C., Liu Y., Hu S., Ye G., Chen J. Novel polyazamacrocyclic receptor impregnated macroporous polymeric resins for highly efficient capture of palladium from nitric acid media // Sep. Purif. Technol. 2020. V. 233. Article 115953.
  29. Yousif A., Nishioka M., Wakui Y., Suzuki T. Adsorption of Pd(II), Pt(IV), and Rh(III) on a ligand encapsulated polymer resin assisted by thermal heating or microwave irradiation // Solv. Extr. Ion Exch. 2012. V. 30. № 1. P. 77.
  30. Ruhela R., Singh K., Tomar B., Shesagiri T., Kumar M., Hubli R., Suri A. Amberlite XAD-16 functionalized with 2-acetyl amide group for the solid phase extraction and recovery of palladium from high level waste // Ind. Eng. Chem. Res. 2013. V. 52. № 15. P. 5400.
  31. Zhang B., Wang S., Fu L., Zhang L. Synthesis and evaluation of 8-aminoquinoline-grafted poly(glycidyl methacrylate) for the recovery of Pd(II) from highly acidic aqueous solutions // Polymers. 2018. V. 10. P. 437.
  32. Morcali M.H., Zeytuncu B. Investigation of adsorption parameters for platinum and palladium onto a modified polyacrylonitrile-based sorbent // Int. J. Miner. Process. 2015. V. 137. P. 52.
  33. Won S.W., Kim S., Kotte P., Lim A., Yun Y.S. Cationic polymer-immobilized polysulfone-based fibers as high performance sorbents for Pt(IV) recovery from acidic solutions // J. Hazard. Mater. 2013. V. 263. № 2. P. 391.
  34. Ricoux Q., Bocokić V., Méricq J. P., Bouyer D., Zutphen S. V., Faur C. Selective recovery of palladium using an innovative functional polymer containing phosphine oxide // J. Chem. Eng. 2015. V. 264. P. 772.
  35. Maksimova Y., Dubenskiy A., Garmash A., Pashkova G., Shigapov I., Seregina I., Pavlova L., Sharanov P., Bolshov M. Simultaneous determination of Os, Ir, Pt and Au in sorbent phases by total reflection X-ray fluorescence // Spectrochim. Acta B: At. Spectrosc. 2022. V. 196. Article 106521.
  36. Limjuco L.A., Burnea F.K. Evaluation of dithiadiamide-based molecular ion imprinted polymer (MIIP) for selective recovery of platinum from acid-digested spent automobile catalytic converter (ACC) solution // MRS Commun. 2022. V. 12. P. 175.
  37. Tsyurupa M.P., Davankov V.A. Hypercrosslinked polymers: Basic principle of preparing the new class of polymeric materials // React. Funct. Polym. 2002. V. 53. № 2–3. P. 193.
  38. Дальнова О.А., Барановская В.Б., Дальнова Ю.С., Карпов Ю.А. Новые комплексообразующие полимерные аминотиоэфирные сорбенты в аналитическом контроле возвратного металлсодержащего сырья редких и благородных металлов // Журн. аналит. химии. 2018. Т. 73. № 3. С. 181. (Dal’nova O.A., Baranovskaya V.B., Dal’nova Y.S., Karpov Yu.A. New complexing polymer aminothioether sorbents in the analytical control of recyclable metal-containing raw material of rare and noble metals // J. Anal. Chem. 2018. V. 73. № 3. P. 221.)
  39. Анпилогова Г.Р., Муринов Ю.И. Извлечение палладия(II) и платины(IV) гетероцепными комплексообразующими сорбентами из модельных растворов выщелачивания отработанных промышленных катализаторов и отработанного раствора аффинажного производства // Журн. прикл. химии. 2021. Т. 94. № 3. С. 324. (Anpilogova G.R., Murinov Y.I. Recovery of palladium(II) and platinum(IV) with heterochain complexing sorbents from solutions simulating leaching solutions of spent industrial catalysts and spent refining solution // Russ. J. Appl. Chem. 2021. V. 94. № 3. P. 310.)
  40. Monier M., Akl M.A., Ali W.M. Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions // Int. J. Biol. Macromol. 2014. V. 66. P. 125.
  41. Yunus I.S., Tsai S.L. Designed biomolecule–cellulose complexes for palladium recovery and detoxification // RSC Adv. 2015. V. 5. № 26. P. 20276.
  42. Hong H. J., Yu H., Hong S., Hwang J.Y., Kim S.M., Park M.S., Jeong H.S. Modified tunicate nanocellulose liquid crystalline fiber as closed loop for recycling platinum-group metals // Carbohydr. Polym. 2020. V. 228. Article 115424.
  43. Mpinga C.N., Eksteen J.J., Aldrich C., Dyer L. A conceptual hybrid process flowsheet for platinum group metals (PGMs) recovery from a chromite-rich Cu-Ni PGM bearing ore in oxidized mineralization through a single-stage leach and adsorption onto ion exchange resin // Hydrometallurgy. 2018. V. 178. P. 88.
  44. Morcali M.H., Zeytuncu B., Akman S., Yucel O. Preparation and sorption behavior of DEAE-cellulose-thiourea-glutaraldehyde sorbent for Pt(IV) and Pd(II) from leaching solutions // Desalin. Water Treat. 2016. V. 57. № 14. P. 6582.
  45. Zhang D., MacDonald L., Raj P., Karamalidis A.K. Thiol-functionalized cellulose adsorbents for highly selective separation of palladium over platinum in acidic aqueous solutions // J. Chem. Eng. 2024. V. 494. Article 152948.
  46. Balakrishnan A., Appunni S., Chinthala M., Jacob M.M., Vo D.V.N., Reddy S.S., Kunnel E.S. Chitosan-based beads as sustainable adsorbents for wastewater remediation: a review // Environ. Chem. Lett. 2023. V. 21. № 3. P. 1881.
  47. Alfanaar R., Aneka Priyangga K.T., Imawan A.C., Jumina J., Kurniawan Y.S. Effective recovery of palladium(II) ions using chitosan-based adsorbent material // J. Multidiscip. Appl. Nat. Sci. 2023. V. 3. № 1. P. 24.
  48. Song M.H., Kim S., Reddy D.H.K., Wei W., Bediako J.K., Park S., Yun Y.S. Development of polyethyleneimine-loaded core-shell chitosan hollow beads and their application for platinum recovery in sequential metal scavenging fill-and-draw process // J. Hazard. Mater. 2017. V. 324. P. 724.
  49. Sharififard H., Zokaee Ashtiani F., Soleimani M. Adsorption of palladium and platinum from aqueous solutions by chitosan and activated carbon coated with chitosan // Asia-Pac. J. Chem. Eng. 2013. V. 8. № 3. P. 384.
  50. Park S.I., Kwak I.S., Won S.W., Yun Y.S. Glutaraldehyde-crosslinked chitosan beads for sorptive separation of Au(III) and Pd(II): Opening a way to design reduction-coupled selectivity-tunable sorbents for separation of precious metals // J. Hazard. Mater. 2013. V. 248–249. № 1. P. 211.
  51. Petrova Y.S., Pestov A.V., Usoltseva M.K., Kapitanova E.I., Neudachina L.K. Methods for correction of selectivity of N-(2-sulfoethyl)chitosan-based materials towards platinum(IV) and palladium(II) ions // Sep. Sci. Technol. 2019. V. 54. № 1. P. 42.
  52. Bratskaya S.Y., Ustinov A.Y., Azarova Y.A., Pestov A.V. Thiocarbamoyl chitosan: Synthesis, characterization and sorption of Au(III), Pt(IV), and Pd(II) // Carbohydr. Polym. 2011. V. 85. № 4. P. 854.
  53. Sharma S., Rajesh N. Expeditious preparation of β-cyclodextrin grafted chitosan using microwave radiation for the enhanced palladium adsorption from aqueous waste and an industrial catalyst // J. Environ. Chem. Eng. 2017. V. 5. № 2. P. 1927.
  54. Rajesh Y., Srinu N., Namrata G., Ramgopal U. Preparation, characterization and Pd(II) adsorption characteristics of chitosan–AC composites from electroless plating solutions // Desalin. Water Treat. 2017. V. 84. P. 279.
  55. Adigun B., Prasad Thapaliya B., Luo H., Dai S. Ionic liquid-based extraction of metal ions via polymer inclusion membranes: a critical review // RSC Sustain. 2024. V. 2. № 10. P. 2768.
  56. Zhao S., Samadi A., Wang Z., Pringle J.M., Zhang Y., Kolev S.D. Ionic liquid-based polymer inclusion membranes for metal ions extraction and recovery: Fundamentals, considerations, and prospects // J. Chem. Eng. 2024. V. 481. Article 148792.
  57. Fajar A.T.N., Hanada T., Goto M. Recovery of platinum group metals from a spent automotive catalyst using polymer inclusion membranes containing an ionic liquid carrier // J. Membr. Sci. 2021. V. 629. Article 119296.
  58. Hanada T., Firmansyah M.L., Yoshida W., Kubota F., Kolev S.D., Goto M. Transport of rhodium(III) from chloride media across a polymer inclusion membrane containing an ionic liquid metal ion carrier // ACS Omega. 2020. V. 5. P. 12989.
  59. Regel-Rosocka M., Rzelewska M., Baczynska M., Janus M., Wisniewski M. Removal of palladium(II) from aqueous chloride solutions with Cyphos phosphonium ionic liquids as metal ion carriers for liquid-liquid extraction and transport across polymer inclusion membranes // Physicochem. Probl. Miner. Process. 2015. V. 51. P. 621.
  60. Pospiech B. Facilitated transport of palladium(II) across polymer inclusion membrane with ammonium ionic liquid as effective carrier // Chem. Pap. 2018. V. 72. P. 301.
  61. Muthukumaran T., Philip J. A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles // Adv. Colloid Interface Sci. 2024. V. 334. Article 103314.
  62. Толмачева В.В., Апяри В.В., Кочук Е.В., Дмитриенко С.Г. Магнитные сорбенты на основе наночастиц оксида железа для выделения и концентрирования органических веществ // Журн. аналит. химии. 2016. Т. 71. № 4. С. 339. (Tolmacheva V.V., Apayari V.V., Kochuk E.V., Dmitrienko S.G. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds // J. Anal. Chem. 2016. V. 71. № 4. P. 321.)
  63. Kudr J., Haddad Y., Richtera L., Heger Z., Cernak M., Adam V., Zitka O. Magnetic nanoparticles: From design and synthesis to real world applications // Nanomaterials. 2017. V. 7. № 9. Article 243.
  64. Geng Y., Li J., Lu W., Wang N., Xiang Z., Yang Y. Au(III), Pd(II) and Pt(IV) adsorption on amino-functionalized magnetic sorbents: Behaviors and cycling separation routines // J. Chem. Eng. 2020. V. 381. Article 122627.
  65. Veisi B., Lorestani B., Sobhan Ardakani S., Cheraghi M., Tayebi L. Post synthetic modification of magnetite @MIL-53(Fe)-NH2 core-shell nanocomposite for magnetic solid phase extraction of ultra-trace Pd(II) ions from real samples // Int. J. Environ. Anal. Chem. 2024. V. 104. № 5. P. 1092.
  66. Karami S., Ebrahimzadeh, H., Asgharinezhad A.A. A simple and fast method based on functionalized magnetic nanoparticles for the determination of Ag(I), Au(III) and Pd(II) in mine stone, road dust and water samples // Anal. Methods. 2017. 9. V. 19. P. 2873.
  67. Lin T.L., Lien H.L. Effective and selective recovery of precious metals by thiourea modified magnetic nanoparticles // Int. J. Mol. Sci. 2013. V. 14. № 5. P. 9834.
  68. Song M.H., Reddy D.H.K., Yun Y.S. Fabrication of high performance amine-rich magnetic composite fibers for the recovery of precious Pt(IV) from acidic solutions // RSC Adv. 2016. V. 6. № 92. P. 89089.
  69. Maksimova V., Mokhodoeva O., Shkinev V., Dzhenloda R. One-pot synthesis of magnetic nanoparticles functionalized by green coatings // J. Nanopart. Res. 2024. V. 26. P. 229.
  70. Mokhodoeva O., Shkinev V., Maksimova V., Dzhenloda R., Spivakov B. Recovery of platinum group metals using magnetic nanoparticles modified with ionic liquids // Sep. Purif. Technol. 2020. V. 248. Article 117049.
  71. Xu J., Wu P., Ye E.C., Yuan B.F., Feng Y.Q. Metal oxides in sample pretreatment // TrAC, Trends Anal. Chem. 2016. V. 80. P. 41.
  72. Nagarjuna R., Sharma S., Rajesh N., Ganesan R. Effective adsorption of precious metal palladium over polyethyleneimine-functionalized alumina nanopowder and its reusability as a catalyst for energy and environmental applications // ACS Omega. 2017. V. 2. № 8. P. 4494.
  73. Reclo M., Yilmaz E., Bazel Y., Soylak M. Switchable solvent based liquid phase microextraction of palladium coupled with determination by flame atomic absorption spectrometry // Int. J. Environ. Anal. Chem. 2017. V. 97. № 14–15. P. 1315.
  74. Gys N., Pawlak B., Lufungula L.L., Marcoen K., Wyns K., Baert K., Atia T.A., Spooren, J., Adriaensens P., Blockhuys F., Hauffman T., Meynen V., Mullens S., Michielsen B. Selective Pd recovery from acidic leachates by 3-mercaptopropylphosphonic acid grafted TiO2: Does surface coverage correlate to performance? // RSC Adv. 2022. V. 12. № 55. P. 36046.
  75. Dai Y., Formo E., Li H., Xue J., Xia Y. Surface-functionalized electrospun titania nanofibers for the scavenging and recycling of precious metal ions // ChemSusChem. 2016. V. 9. № 20. P. 2912.
  76. Yavuz E., Tokalioǧlu Ş., Şahan, H., Patat Ş. Nano sponge Mn2O3 as a new adsorbent for the preconcentration of Pd(II) and Rh(III) ions in sea water, wastewater, rock, street sediment and catalytic converter samples prior to FAAS determinations // Talanta. 2014. V. 128. P. 31.
  77. Trieu Q.A., Pellet-Rostaing S., Arrachart G., Traore Y., Kimbel, S., Daniele S. Interfacial study of surface-modified ZrO2 nanoparticles with thioctic acid for the selective recovery of palladium and gold from electronic industrial wastewater // Sep. Purif. Technol. 2020. V. 237. Article 116353.
  78. Bagheri A.R., Shokrollahi A. Recent trends in the use of silica-based materials and their composites in extraction techniques: A review // TrAC, Trends Anal. Chem. 2024. V. 180. Article 117910.
  79. Florek J., Negoro M., Hu Y., Kanamori K., Nakanishi K., Kleitz F. The Role of Nanoporous Adsorbents in the Circular Economy – Closing the Loop of Critical Materials Recovery // Adv. Funct. Mater. 2025. V. 35. № 1. Article 2409462.
  80. Mladenova E., Dakova I., Karadjova I., Karadjov M. Column solid phase extraction and determination of ultra-trace Au, Pd and Pt in environmental and geological samples // Microchem. J. 2012.V. 101. P. 59.
  81. Barczak M., Dobrzyńska J., Oszust M., Skwarek E., Ostrowski J., Zięba E., Borowski P., Dobrowolski R. Synthesis and application of thiolated mesoporous silicas for sorption, preconcentration and determination of platinum // Mater. Chem. Phys. 2016. V. 181. P. 126.
  82. Awual M.R., Yaita T. Rapid sensing and recovery of palladium(II) using N,N-bis(salicylidene)1,2-bis(2-aminophenylthio)ethane modified sensor ensemble adsorbent // Sens. Actuators B: Chem. 2013. V. 183. P. 332.
  83. Losev V., Elsuf`ev E., Borodina E., Buyko O., Maznyak N., Trofimchuk A. Silicas chemically modified with sulfur-containing groups for separation and preconcentration of precious metals followed by spectrometric determination // Minerals. 2021. V. 11. № 5. P. 481.
  84. Izatt R.M., Izatt S.R., Izatt N.E., Krakowiak K.E., Bruening R.L., Navarro L. Industrial applications of molecular recognition technology to separations of platinum group metals and selective removal of metal impurities from process streams // Green Chem. 2015. V. 17. № 4. P. 2236.
  85. Бондарь Н.М., Буслаева Т.М., Эрлих Г.В., Марютина Т.А., Копылова Е.В., Мингалев П.Г. Сорбция комплексов иридия нанесенными ионными жидкостями // Журн. неорг. химии. 2021. Т. 66. № 4. С. 549. (Bodnar’ N.M., Buslaeva T.M., Erlikh G.V., Maryutina T.A., Kopylova E.V., Mingalev P.G. Sorption of iridium complexes with supported ionic liquids // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 586.)
  86. Дидух-Шадрина С.Л., Лосев В.Н., Мазняк Н.В., Трофимук А.К. Применение кремнезема с иммобилизованной 2-нитрозо-1-нафтол-4-сульфокислотой для сорбционно-фотометрического определения палладия // Журн. аналит. химии. 2019. Т. 74. № 8. С. 574. (Didukh-Shadrina S.L., Losev V.N., Maznyak N.V., Trofimchuk A.K. Use of silica with immobilized 2-nitroso-1-naphthol-4-sulfonic acid for the sorption–photometric determination of palladium // J. Anal. Chem. 2019. V. 74. № 8. P. 738.)
  87. Лосев В.Н., Елсуфьев Е.В., Трофимук А.К., Легенчук А.В. Низкотемпературное сорбционно-люминесцентное определение платины с использованием силикагеля, химически модифицированного дитиокарбаминатными группами // Журн. аналит. химии. 2012. Т. 67. № 9. С. 860. (Losev V.N., Elsuf’Ev E.V., Trofimchuk A.K., Legenchuk A.V. Low-temperature sorption-luminescence determination of platinum using silica chemically modified with dithiocarbamate groups // J. Anal. Chem. 2012. V. 67. № 9. P. 772.)
  88. Ayanda O.S., Mmuoegbulam A.O., Okezie O., Durumin Iya N.I., Mohammed S.E., James P.H., Muhammad A.B., Unimke A.A., Alim S.A., Yahaya S.M., Ojo A., Adaramoye T.O., Ekundayo S.K., Abdullahi A., Badamasi H. Recent progress in carbon-based nanomaterials: critical review // J. Nanoparticle Res. 2024. V. 26. № 5. P. 1.
  89. Krishna R.H., Chandraprabha M.N., Samrat K., Krishna Murthy T.P., Manjunatha C., Kumar S.G. Carbon nanotubes and graphene-based materials for adsorptive removal of metal ions – A review on surface functionalization and related adsorption mechanism // Appl. Surf. Sci. Adv. 2023. V. 16. Article 100431.
  90. Liu J., Chen S., Liu Y., Zhao B. Progress in preparation, characterization, surface functional modification of graphene oxide: A review // J. Saudi Chem. Soc. 2022. V. 26. № 6. Article 101560.
  91. Liu L., Liu S., Zhang Q., Li C., Bao C., Liu X., Xiao P. Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution onto graphene oxide // J. Chem. Eng. Data. 2013. V. 58. № 2. P. 209.
  92. Chaudhuri H., Lin X., Yun Y.S. Graphene oxide-based dendritic adsorbent for the excellent capturing of platinum group elements // J. Hazard. Mater. 2023. V. 451. Article 131206.
  93. Li J., Wang S., Wang F., Wu X., Zhuang X. Environmental separation and enrichment of gold and palladium ions by amino-modified three-dimensional graphene // RSC Adv. 2019. V. 9. № 5. 2816.
  94. Chen G., Wang Y., Weng H., Wu Z., He K., Zhang P., Guo Z., Lin M. Selective separation of Pd(II) on pyridine-functionalized graphene oxide prepared by radiation-induced simultaneous grafting polymerization and reduction // ACS Appl. Mater. Interfaces. 2019. V. 11. № 27. P. 24560.
  95. Neyestani M.R., Shemirani F., Mozaffari S., Alvand M. A magnetized graphene oxide modified with 2-mercaptobenzothiazole as a selective nanosorbent for magnetic solid phase extraction of gold(III), palladium(II) and silver(I) // Microchim. Acta. 2017. V. 184. № 8. P. 2871.
  96. Kumar N., Pandey A., Rosy, Sharma Y.C. A review on sustainable mesoporous activated carbon as adsorbent for efficient removal of hazardous dyes from industrial wastewater // J. Water Process Eng. 2023. V. 54. Article 104054.
  97. P.R., McDowell R., Dutech G. The adsorption of gold, palladium, and platinum from acidic chloride solutions on mesoporous carbons // Solv. Extr. Ion Exch. 2014. V. 32. № 7. P. 737.
  98. Sharififard H., Soleimani M., Ashtiani F.Z. Evaluation of activated carbon and bio-polymer modified activated carbon performance for palladium and platinum removal // J. Taiwan Inst. Chem. Eng. 2012. V. 43. № 5. P. 696.
  99. Dobrowolski R., Mróz A., Otto M., Kuryło M. Development of sensitive determination method for platinum in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry // Microchem. J. 2015. V. 121. P. 18.
  100. Rathinavel S., Priyadharshini K., Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application // Mater. Sci. Eng. B. 2021. V. 268. Article 115095.
  101. Hughes K.J., Iyer K.A., Bird R.E., Ivanov J., Banerjee S., Georges G., Zhou Q.A. Review of carbon nanotube research and development: Materials and emerging applications // ACS Appl. Nano Mater. 2024. V. 7. № 16. P. 18695.
  102. Iqbal A., Jan M.R., Shah J., Rashid B. Dispersive solid phase extraction of precious metal ions from electronic wastes using magnetic multiwalled carbon nanotubes composite // Miner. Eng. 2020. V. 154. P. 106414.
  103. Muleja A.A. Adsorption of platinum ion from “aged” aqueous solution: Application and comparative study between purified MWCNTs and triphenylphosphine MWCNTs // Environ. Sci. Pollut. Res. 2018. V. 25. № 20. P. 20032.
  104. Захарченко Е.А., Колотов В.П., Казин В.И., Догадкин Д.Н., Бураков А.Е., Буракова И.В., Тюрин Д.А., Ткачев А.Г. Твердофазные экстрагенты на основе углеродных нанотрубок для концентрирования благородных металлов из солянокислых сред // Сорбционные и хроматографические процессы. 2023. Т. 23. № 6. С. 1006. (Zakharchenko E.A., Kolotov V.P., Kazin V.I., Dogadkin D.N., Burakov A.E., Burakova I.V., Tyurin D.A., Tkachev A.G. Solid-phase extractants based on carbon nanotubes for preconcentrating noble metals from hydrochloric acid media // J. Anal. Chem. 2024. V. 79. № 9. P. 1198.)
  105. Yusuf V.F., Malek N.I., Kailasa S.K. Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment // ACS Omega. 2022. V. 7. № 49. P. 44507.
  106. Chen Y., Ma J., Yang H., Ji H., Li W., Pi Y., Pang H. Application of modified metal-organic frameworks in water treatment // Mater. Today Chem. 2023. V. 30. Article 101577.
  107. Lim C.R., Lin S., Yun Y.S. Highly efficient and acid-resistant metal-organic frameworks of MIL-101(Cr)-NH2 for Pd(II) and Pt(IV) recovery from acidic solutions: Adsorption experiments, spectroscopic analyses, and theoretical computations // J. Hazard. Mater. 2020. V. 387. Article 121689.
  108. Maponya T.C., Makgopa K., Somo T.R., Tshwane D.M., Modibane K.D. Ethylenediamine functionalized waste polyethylene terephthalate-derived metal-organic framework for adsorption of palladium ions from aqueous solutions // Chem. Eng. Sci. 2023. V. 6. Article 100106.
  109. Far H.S., Hasanzadeh M., Nashtaei M.S., Rabbani M. Fast and efficient adsorption of palladium from aqueous solution by magnetic metal–organic framework nanocomposite modified with poly(propylene imine) dendrimer // Environ. Sci. Pollut. Res. Int. 2021. V. 28. № 44. P. 62474.
  110. Mohseni S.F., Manoochehri M., Afshar Taromi F. A novel poly(2-mercaptobenzothiazole) coated magnetic nanoadsorbent derived from ZIF-8 for preconcentration/determination of palladium and silver // RSC Adv. 2022. V. 12. № 55. P. 35849.
  111. Zha M., Liu J., Wong Y.L., Xu Z. Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions // J. Mater. Chem. 2015. V. 3. № 7. P. 3928.
  112. Lin S., Kumar Reddy D.H., Bediako J.K., Song M.H., Wei W., Kim J.A., Yun Y.S. Effective adsorption of Pd(II), Pt(IV) and Au(III) by Zr(IV)-based metal–organic frameworks from strongly acidic solutions // J. Mater. Chem. 2017. V. 5. № 26. P. 13557.
  113. Шишов А.Ю., Моходоева О.Б. Индексы экологичности в аналитической химии // Журн. аналит. химии. 2024. T. 79. № 5. С. 425. (Shishov A.Yu., Mokhodoeva O.B. Green chemistry metrics in analytical chemistry // J. Anal. Chem. 2024. V. 79. № 5. P. 487.)
  114. Nowak P.M., Wietecha-Posłuszny R., Pawliszyn J. White analytical chemistry: An approach to reconcile the principles of green analytical chemistry and functionality // TrAC, Trends Anal. Chem. 2021. V. 138. Article 116223.
  115. Mokhodoeva O. Alternative extraction systems for precious metals recovery: Aqueous biphasic systems, ionic liquids, deep eutectic solvents / Extraction Metallurgy – New Perspectives. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.113354
  116. Плетнев И.В., Смирнова С.В., Шаров А.В., Золотов Ю.А. Экстракционные растворители нового поколения от ионных жидкостей и двухфазных систем к легкоплавким комбинированным растворителям // Успехи химии. 2021. Т. 90. № 9. С. 1109. (Pletnev I.V., Smirnova S.V., Sharov A.V., Zolotov Y.A. New generation extraction solvents: from ionic liquids and aqueous biphasic systems to deep eutectic solvents // Russ. Chem. Rev. 2021. V. 90. № 9. P. 1109.)
  117. Chen Y., Mu T. Revisiting greenness of ionic liquids and deep eutectic solvents // Green Chem Eng. 2021. V. 2. № 2. P. 174.
  118. Bystrzanowska M., Pena-Pereira F., Marcinkowski Ł., Tobiszewski M. How green are ionic liquids? – A multicriteria decision analysis approach // Ecotoxicol. Environ. Saf. 2019. V. 174. P. 455.
  119. Моходоева О.Б., Максимова В.В., Дженлода Р.Х., Шкинев В.М. Модифицированные ионными жидкостями магнитные наночастицы в анализе объектов окружающей сред // Журн. аналит. химии. 2021. T. 76. № 6. С. 483. (Mokhodoeva O.B., Maksimova V.V., Dzhenloda R.K., Shkinev V.V. Magnetic nanoparticles modified by ionic liquids in environmental analysis // J. Anal. Chem. 2021. V. 76. № 6. P. 675.)
  120. Lee J., Kurniawan K., Kim S., Nguyen V.T., Pandey B.D. Ionic liquids-assisted solvent extraction of precious metals from chloride solutions // Sep. Purif. Rev. 2022. V. 52. № 3. P. 242.
  121. Firmansyah M.L., Yoshida W., Hanada T., Goto M. Application of ionic liquids in solvent extraction of platinum group metals // Solvent Extr. Res. Dev. Jpn. 2020. V. 27. № 1. P. 1.
  122. Lanaridi O., Schnürch M., Limbeck A., Schröder K. Liquid- and solid-based separations employing ionic liquids for the recovery of platinum group metals typically encountered in catalytic converters: A review // ChemSusChem. 2022. V. 15. № 6. Article e202102262.
  123. Bayat M., Shemirani F., Hossein Beyki M., Davudabadi Farahani M. Ionic liquid-modified Fe3O4 nanoparticle combined with central composite design for rapid preconcentration and determination of palladium ions // Desalin. Water Treat. 2015. V. 56. P. 814.
  124. Zhou S., Song N., Lv X., Jia Q. Magnetic dual task-specific polymeric ionic liquid nanoparticles for preconcentration and determination of gold, palladium and platinum prior to their quantitation by graphite furnace AAS // Microchim. Acta. 2017. V. 184. P. 3497.
  125. Khusnun N.F., Hasan N.S., Amalina I., Jalil A.A. Firmansyah M.L. Enhanced recovery of palladium from an aqueous solution using an ionic liquid–mesoporous silica composite in batch and fixed-column studies // Ind. Eng. Chem. Res. 2022. V. 61. P. 8634.
  126. Bui T.T.L., Uong H.T.N., Pham N.C., Nguyen D.K., Ngo S., Nguyen B.T. Preparation and application of supported ionic liquid phases for sorption of Pt(IV) from chloride solution // Chem. Pap. 2021. V. 75. P. 1567.
  127. Navarro R., Garcia E., Saucedo I., Guibal E. Platinum (IV) recovery from HCl solutions using amberlite XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid // Sep. Sci. Technol. 2012. V. 47. P. 2199.
  128. Navarro-Mendoza R., Lira M.A., Saucedo I., Alatorre A., Guibal E. Amberlite XAD-1180 impregnation with Cyphos IL 101 for the selective recovery of precious metals from HCl solutions // Gold Bull. 2017. V. 50. P. 7.
  129. Witt K., Urbaniak W., Kaczorowska M.A., Bożejewicz D. Simultaneous recovery of precious and heavy metal ions from waste electrical and electronic equipment (WEEE) using polymer films containing Cyphos IL 101 // Polymers. 2021. V. 13. P. 1454.
  130. Моходоева О.Б., Никулин А.В., Мясоедова Г.В., Кубракова И.В. Новый комбинированный метод ЭТААС определения следов платины, палладия и золота в природных объектах // Журн. аналит. химии. 2012. T. 67. № 6. С. 589. (Mokhodoeva O.B., Nikulin A.V., Myasoedova G.V., Kubrakova I.V. A new combined ETAAS method for the determination of platinum, palladium, and gold traces in natural samples // J. Anal. Chem. 2012. V. 67. P. 531.)
  131. Моходоева О.Б., Мясоедова Г.В., Кубракова И.В., Никулин А.В., Артюшин О.И., Одинец И.Л. Новые твердофазные экстрагенты для концентрирования благородных металлов // Журн. аналит. химии. 2010. T. 65. № 1. С. 15. (Mokhodoeva O.B., Myasoedova G.V., Kubrakova I.V., Nikulin A.V., Artyushin O.I., Odinets I.L. New solid extractants for preconcentrating nobel metals // J. Anal. Chem. 2010. V. 65. P. 12.)
  132. Mohdee V., Ramakul P., Phatanasri S., Pancharoen U. A numerical and experimental investigation on the selective separation of Pd (II) from wastewater using Aliquat 336 via hollow fiber supported liquid membrane // J. Environ. Chem. Eng. 2020. V. 8. Article 104234.
  133. Sharma S., Rajesh N. Synergistic influence of graphene oxide and tetraoctylammonium bromide (frozen ionic liquid) for the enhanced adsorption and recovery of palladium from an industrial catalyst // J. Environ. Chem. Eng. 2016. V. 4. P. 4287.
  134. Kumar A.S.K., Sharma S., Reddy R.S., Barathi M., Rajesh N. Comprehending the interaction between chitosan and ionic liquid for the adsorption of palladium // Int. J. Biol. Macromol. 2015. V. 72. P. 633.
  135. Abbot A.P., Capper G.C., Davies D.L., Rasheed R.K., Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures // Chem. Commun. 2003. № 1. P. 70.
  136. Schaeffer N. Non-ionic hydrophobic eutectics – Versatile solvents for tailored metal separation and valorisation // Green Chem. 2020. V. 22. № 9. P. 2810.
  137. Shishov A., El-Deen A.K., Godunov P., Bulatov A. Atypical deep eutectic solvents: New opportunities for chemical analysis // TrAC, Trends Anal. Chem. 2024. V. 176. Article 117752.
  138. Vargas S.J.R. Pérez-Sánchez G., Schaeffer N., Coutinho J.A.P. Solvent extraction in extended hydrogen bonded fluids – Separation of Pt(IV) from Pd(II) using TOPO-based type V DES // Green Chem. 2021. V. 23. № 12. P. 4540.
  139. Maksimova V., Lapina V., Martynov L., Shishov A., Mokhodoeva O. Gold determination by electrothermal atomic absorption spectrometry after preconcentration using natural deep eutectic solvent based on menthol and camphor // J. Anal. Test. 2023. V. 7. P. 435.
  140. Panhwar A.H., Tuzen M., Kazi T.G. Use of deep eutectic solvent-based air-assisted emulsification liquid-liquid microextraction of palladium and determination by flame atomic absorption spectrometry in water and environmental samples // At. Spectrosc. 2019. V. 40. P. 227.
  141. ALOthman Z.A., Habila M.A., Yilmaz E., Alabdullkarem E.A., Soylak M. A novel deep eutectic solvent microextraction procedure for enrichment, separation and atomic absorption spectrometric determination of palladium at ultra-trace levels in environmental samples // Measurement. 2020. V. 153. Article 107394.
  142. Abdi K., Ezoddin M., Pirooznia N. Temperature-controlled liquid–liquid microextraction using a biocompatible hydrophobic deep eutectic solvent for microextraction of palladium from catalytic converter and road dust samples prior to ETAAS determination // Microchem. J. 2020. V. 157. Article 104999.
  143. Tang, L., Liu C., Yin G., Zhu Q., Huang J., Dong X., Yang X., Wang S. Environmentally benign hydrophobic deep eutectic solvents for palladium(II) extraction from hydrochloric acid solution // J. Taiwan Inst. Chem. Eng. 2021. V. 121. P. 92.
  144. Mokhodoeva O., Maksimova V., Shishov A., Shkinev V. Separation of platinum group metals using deep eutectic solvents based on quaternary ammonium salts // Sep. Purif. Technol. 2023. V. 305. Article 122427.
  145. El Messaoudi N., Aydın F., Miyah Y., Fernine Y., Georgin J., Wasilewska M., Benjelloun M., Graba B., Knani S. Metal and metal oxide nanoparticles combined with ionic liquids and deep eutectic solvents and their practices in drug extraction and environmental processes: A review // J. Mol. Liq. 2025. V. 422. Article 126955.
  146. Khan W.A., Arain M.B., Balal S., Mollahosseini A., Soylak M. Deep eutectic solvent-functionalized metal-organic frameworks in sorptive extraction techniques and their applications – A review // Microchem. J. 2025. V. 212. Article 113201.
  147. Иванеев А.И., Ермолин М.С., Федотов П.С. Разделение, характеризация и анализ нано- и микрочастиц окружающей среды: современные методы и подходы // Журн. аналит. химии. 2015. T. 76. № 4. С. 291. (Ivaneev A.I., Ermolin M.S., Fedotov P.S. Separation, characterization, and analysis of environmental nano- and microparticles: State-of-the-art methods and approaches // J. Anal. Chem. 2021. V. 76. № 4. P. 413.)
  148. Fedotov P.S., Ermolin M.S., Katasonova O.N. Field-flow fractionation of nano- and microparticles in rotation coiled columns // J. Chromatogr. A. 2015. V. 1381. P. 202.
  149. Дженлода Р.Х., Шкинев В.М., Данилова Т.В., Темердашев З.А., Карандашев В.К., Спиваков Б.Я. Суспензионные колонки с удерживаемыми в ультразвуковом поле зернистыми сорбентами для выделения и определения редкоземельных элементов в винах // Журн. аналит. химии. 2015. T. 70. № 12. С. 1264. (Dzhenloda R.K., Shkinev V.M., Danilova T.V., Spivakov B.Y., Temerdashev Z.A., Karandashev V.K. Suspension columns with grain sorbents retained in an ultrasonic field for separation and determination of rare-earth elements in wines // J. Anal. Chem. 2015. V. 70. № 12. P. 1456.)
  150. Mokhodoeva O., Maksimova V., Danilova T., Krivenko A., Shkinev V. Sorbent magnetic levitation in the 3D printed platform // Microchim. Acta. 2025. V. 192. Article 285.
  151. Montoro Leal P., Vereda Alonso E., López Guerrero M.M., Siles Cordero M.T., Cano Pavón J.M., García de Torres A. Speciation analysis of inorganic arsenic by magnetic solid phase extraction on-line with inductively coupled mass spectrometry determination // Talanta. 2018. V. 184. P. 251.
  152. Ayala A., Takagai Y. On-line pseudo-stationary magnetic solid-phase extraction using magnetic cation exchange microparticles and its application to the determination of strontium // J. Anal. At. Spectrom. 2018. V. 33. P. 1251.
  153. Saraji M., Mohammadipour L., Mehrafza N. An effective configuration for automated magnetic micro solid-phase extraction of phenylurea herbicides from water samples followed by high-performance liquid chromatography // J. Chromatogr. A. 2020. V. 1617. Article 460829.
  154. Huang Y.-F., Li Y., Jiang Y., Yan X.-P. Magnetic immobilization of amine-functionalized magnetite microspheres in a knotted reactor for on-line solid-phase extraction coupled with ICP-MS for speciation analysis of trace chromium // J. Anal. At. Spectrom. 2020. V. 25. P. 1467.
  155. Ri H.-C., Jon C.-S., Lu L., Piao X., Li D. A dynamic electromagnetic field assisted boronic acid-modified magnetic adsorbent on-line extraction of cis-diol-containing flavonoids from onion sample // J. Food. Compos. Anal. 2023. V. 119. Article 105279.
  156. Кубракова И.В. Микроволновое излучение в аналитической химии: возможности и перспективы использования // Успехи химии. 2020. Т. 71. № 4. С. 327. (Kubrakova I.V. Microwave radiation in analytical chemistry: The scope and prospects for application // Russ. Chem. Rev. 2002. V. 71. № 4. P. 283.)
  157. Моходоева О.Б., Мясоедова Г.В., Кубракова И.В. Концентрирование благородных металлов комплексообразующим сорбентом ПОЛИОРГС 4 под воздействием микроволнового излучения // Журн. аналит. химии. 2007. Т. 62. № 5. C. 454. (Mokhodoeva O.B., Myasoedova G.V., Kubrakova I.V. Preconcentration of noble metals with the POLYORGS 4 complexing sorbent under the action of microwave irradiation // J. Anal. Chem. 2007. V. 62. № 5. P. 406.)
  158. Dzhenloda R.Kh., Mokhodoeva O.B., Danilova T.V., Maksimova V.V., Shkinev V.M. Ultrasound suspension columns for solid-phase extraction of platinum and palladium / Advances in Geochemistry and Analytical Chemistry – Special Publication to 75th Anniversary of Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences. Springer International Publishing, 2023. P. 535. https://doi.org/10.1007/978-3-031-09883-3_32

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».