Methods of the Investigation and Chemical Analysis of Microplastics and the Determination of Associated Compounds
- Authors: Ermolin M.S.1, Katasonova O.N.1, Romanova Y.N.1, Dzhenloda R.K.1
-
Affiliations:
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- Issue: Vol 80, No 9 (2025)
- Pages: 904-936
- Section: REVIEWS
- Submitted: 10.09.2025
- URL: https://journal-vniispk.ru/0044-4502/article/view/308728
- DOI: https://doi.org/10.31857/S0044450225090027
- EDN: https://elibrary.ru/btrbla
- ID: 308728
Cite item
Abstract
Microplastic emissions to the environment increase every year. Over the past twenty years after the first publication on the study of microplastics, the problem of the global environmental pollution by synthetic materials has been confirmed, its toxicological effect has been proven at all levels of the organization of biosystems, including human health. Spectral, chromatographic, microscopic, and thermal methods of analysis are used to study microplastics. This review considers these groups of methods in the context of their application to the identification of microplastics and the determination of toxic substances associated with them.
About the authors
M. S. Ermolin
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: ermolin@geokhi.ru
Kosygina St., 19, Moscow, 119991 Russia
O. N. Katasonova
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: ermolin@geokhi.ru
Kosygina St., 19, Moscow, 119991 Russia
Y. N. Romanova
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: ermolin@geokhi.ru
Kosygina St., 19, Moscow, 119991 Russia
R. K. Dzhenloda
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: ermolin@geokhi.ru
Kosygina St., 19, Moscow, 119991 Russia
References
- Lau W.W.Y., Shiran Y., Bailey R.M., Cook E., Stuchtey M.R., Koskella J., Velis C.A., Godfrey L., Boucher J., Murphy M.B., Thompson R.C., Jankowska E., Castillo A.C., Pilditch T.D., Dixon B., Koerselman L., Kosior E., Favoino E., Gutberlet J., Baulch S., Atreya M.E., Fischer D., He K.K., Petit M.M., Sumaila U.R., Neil E., Bernhofen M.V., Lawrence K., Palardy J.E. Evaluating scenarios toward zero plastic pollution // Science. 2020. V. 369. P. 1465. https://doi.org/10.1126/science.aba9475
- Thompson R.C., Courtene-Jones W., Boucher J., Pahl S., Raubenheimer K., Koelmans A.A. Twenty years of microplastic pollution research – what have we learned? // Science. 2024. V. 386. https://doi.org/10.1126/science.adl2746
- Thompson R.C., Olsen Y., Mitchell R.P., Davis A., Rowland S.J., John A.W.G., McGonigle D., Russell A.E. Lost at sea: Where is all the plastic? // Science. 2004. V. 304. № 5672. P. 838. https://doi.org/10.1126/science.1094559
- Ермолин М.С. Оценка содержания микропластика в природных водах и донных отложениях: пробоотбор и пробоподготовка // Журн. аналит. химии. 2024. Т. 79. № 5. С. 440. (Ermolin M.S. Assessment of the Microplastics Content in Natural Waters and Sediments: Sampling and Sample Preparation // J. Anal. Chem. 2024. V. 79. № 5. P. 500. https://doi.org/10.1134/S1061934824050058
- Vitali C., Peters R.J.B., Janssen H.G., Nielen M.W.F., Ruggeri F.S. Microplastics and nanoplastics in food, water, and beverages, part II. Methods // Trends Anal. Chem. 2022. V. 157. Article 116819. https://doi.org/10.1016/j.trac.2022.116819
- Sajad S., Allam B.K., Mushtaq Z., Banerjee S. Microplastic detection and analysis from water and sediment: A review // Macromol. Symp. 2023. V. 407. № 1. P. 2100367. https://doi.org/10.1002/masy.202100367
- Mandemaker L.D.B., Meirer F. Spectro-microscopic techniques for studying nanoplastics in the environment and in organisms // Angew. Chem. Int. Ed. 2023, V. 62. Article e20221049. https://doi.org/10.1002/anie.202210494
- Ivleva N.P. Chemical analysis of microplastics and nanoplastics: Challenges, advanced methods, and perspectives // Chem. Rev. 2021. V. 121. № 19. P. 11886. https://doi.org/10.1021/acs.chemrev.1c00178
- Oz¨ genç̧ E. Advanced analytical techniques for assessing and detecting microplastic pollution in water and wastewater systems // Environ. Qual. Manage. 2024. V. 34. Article e22217. https://doi.org/10.1002/tqem.22217
- Kalaronis D., Ainali N.M., Evgenidou E., Kyzas G.Z., Yang X., Bikiaris D.N., Lambropoulou D.A. Microscopic techniques as means for the determination of microplastics and nanoplastics in the aquatic environment: A concise review // Green Anal. Chem. 2022. V. 3. ID 100036. https://doi.org/10.1016/j.greeac.2022.100036
- Mariano S., Tacconi S., Fidaleo M., Rossi M., Dini L. Micro and nanoplastics identification: classic methods and innovative detection techniques // Front. Toxicol. 2021. V. 3. ID 636640. https://doi.org/10.3389/ftox.2021.636640
- Crawford C.B., Quinn B. 10 – Microplastic identification techniques / Microplastic Pollutants / Elsevier, 2017. P. 219. https://doi.org/10.1016/B978-0-12-809406-8.00010-4
- Tran T.V., Jalil A.A., Nguyen T.M., Nguyen T.T.T., Nabgan W., Nguyen D.T.C. A review on the occurrence, analytical methods, and impact of microplastics in the environment // Environ. Toxicol. Pharmacol. 2023. V. 102. ID 104248. https://doi.org/10.1016/j.etap.2023.104248
- Jung S., Cho S-H., Kim K.-H, Kwon E.E. Progress in quantitative analysis of microplastics in the environment: A review // Chem. Eng. J. 2021. V. 422. ID 130154. https://doi.org/10.1016/j.cej.2021.130154
- Song Y.K., Hong S.H., Jang M., Han G.M., Rani M., Lee J., Shim W.J. A comparison of microscopic and spectroscopic identification methods for analysis of MPs in environmental samples // Mar. Pollut. Bull. 2015. V. 93. P. 202. https://doi.org/10.1016/j.marpolbul.2015.01.015
- Randhawa J.S. Advanced analytical techniques for microplastics in the environment: a review // Bull. Natl. Res. Cent. 2023. V. 47. ID 174. https://doi.org/10.1186/s42269-023-01148-0
- Primpke S., Christiansen S.H., Cowger W., De Frond H., Deshpande A., Fischer M., Holland E.B., Meyns M., O'Donnell B.A.O., Ossmann B.E., Pittroff M., Sarau G., Scholz-Böttcher B.M., Wiggin K.J. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics // Appl. Spectr. 2020. V. 74. № 9. P. 1012. https://doi.org/10.1177/0003702820921465
- Abbasi S. Prevalence and physicochemical characteristics of microplastics in the sediment and water of Hashilan Wetland, a national heritage in NW Iran // Environ. Technol. Innov. 2021. V. 23. ID 101782. https://doi.org/10.1016/j.eti.2021.101782
- Sierra I., Chialanza M.R., Faccio R., Carrizo D., Fornaro L., Pérez-Parada A. Identification of microplastics in wastewater samples by means of polarized light optical microscopy // Environ. Sci. Pollut. Res. 2020. V. 27. P. 7409. https://doi.org/10.1007/s11356-019-07011-y
- Chialanza M.R., Sierra, I., Parada A.P., Fornaro L. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry // Environ. Sci. Pollut. Res. 2018. V. 25. P. 16767. https://doi.org/10.1007/s11356-018-1846-0
- Karpenko A.A., Odintsov V.S., Istomina, A.A. Micro-nano-sized polytetrafluoroethylene (teflon) particles as a model of plastic pollution detection in living organisms // Environ. Sci. Pollut. Res. 2020. V. 29. P. 11281. https://doi.org/10.1007/s11356-021-16487-6
- Li Y., Zhu Y., Huang J., Ho Y-W., Fang J.K-H., Lam E.Y. High-throughput microplastic assessment using polarization holographic imaging // Sci. Rep. 2024. V. 14. ID 2355. https://doi.org/10.1038/s41598-024-52762-5
- Zhu Y., Li Y., Huang J., Lam E.Y. Smart polarization and spectroscopic holography for real-time microplastics identification // Commun. Eng. 2024. V. 3. ID 32. https://doi.org/10.1038/s44172-024-00178-4
- Peller J.R., Mezyk S.P., Shidler S., Castleman J., Kaiser S., Faulkner R.F., Pilgrim C.D., Wilson A., Martens S., Horne G.P. Facile nanoplastics formation from macro and microplastics in aqueous media // Environ. Pollut. 2022. V. 313. ID 120171. https://doi.org/10.1016/j.envpol.2022.120171
- Fakhrullin R., Nigamatzyanova L., Fakhrullina G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research // Sci. Total Environ. 2021. V. 772. ID 145478. https://doi.org/10.1016/j.scitotenv.2021.145478
- Sridhar A., Kannan D., Kapoor A., Prabhakar S. Extraction and detection methods of microplastics in food and marine systems: A critical review // Chemosphere. 2022. V. 286. ID 131653 https://doi.org/10.1016/j.chemSphere.2021.131653
- Shan J.,Zhao J., Zhang Y., Liu L., Wu F., Wang X. Simple and rapid detection of microplastics in seawater using hyperspectral imaging technology // Anal. Chim. Acta. 2019. V. 1050. P. 161. https://doi.org/10.1016/j.aca.2018.11.008
- Nigamatzyanova L., Fakhrullin R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study // Environ. Pollut. 2021. V. 271. ID 116337. https://doi.org/10.1016/j.envpol.2020.116337
- Batasheva S., Akhatova F., Abubakirov N., Fakhrullin R. Probing nanoplastics derived from polypropylene face masks with hyperspectral dark-field microscopy // Sci. Total Environ. 2023. V. 854. ID 158574. https://doi.org/10.1016/j.scitotenv.2022.158574
- Lichtman, J., Conchello, J.A. Fluorescence microscopy // Nat. Methods. 2005. V. 2. P. 910. https://doi.org/10.1038/nmeth817
- Liu Y., Li J., Parakhonskiy B.V., Hoogenboom R., Skirtach A., De Neve S. Labelling of micro- and nanoplastics for environmental studies: State-of-the-art and future challenges // J. Hazard. Mater. 2024. V. 462. ID 132785. https://doi.org/10.1016/j.jhazmat.2023.132785
- Ho D., Liu S., Wei H., Karthikeyan K.G. The glowing potential of Nile red for microplastics identification: Science and mechanism of fluorescence staining // Microchem. J. 2024. V. 197. ID 109708 https://doi.org/10.1016/j.microc.2023.109708
- Shim W.J., Song Y.K., Hong S.H., Jang M. Identification and quantification of microplastics using Nile Red staining // Mar. Pollut. Bull. 2016. V. 113. № 1–2. P. 469. https://doi.org/10.1016/j.marpolbul.2016.10.049
- Meyers N., Catarino A.I., Declercq A.M., Brenan A., Devriese L., Vandegehuchte M., De Witte B., Janssen C., Everaert G. Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique // Sci. Total Environ. 2022. V. 823. ID 153441. https://doi.org/10.1016/j.scitotenv.2022.153441
- Kо K., Chung H. Fluorescence microfluidic system for real-time monitoring of PS and PVC sub-micron microplastics under flowing conditions // Sci. Total Environ. 2024. V. 950. ID 175016. https://doi.org/10.1016/j.scitotenv.2024.175016
- Girão A.V., Caputo G., Ferro M.C. Chapter 6 – Application of scanning electron microscopy – Energy dispersive X-ray spectroscopy (SEM-EDS) / Comprehensive Analytical Chemistry / Eds. Rocha-Santos T.A.P., Duarte A.C. Elsevier, 2017. V. 75. P. 153. https://doi.org/10.1016/bs.coac.2016.10.002
- Mohamed E.F., El-Mekawy A., Abdel-Latifn N.M. Airborne microplastic contamination and health risks in Greater Cairo, Egypt // Environ. Sci. Pollut. Res. 2025. V. 32. P. 7705. https://doi.org/10.1007/s11356-025-36204-x
- Manbohi A., Mehdinia A., R., Dehbandi R. Microplastic pollution in inshore and offshore surface waters of the southern Caspian Sea // Chemosphere. 2021. V. 281. ID 130896. https://doi.org/10.1016/j.chemosphere.2021.130896
- Abbasi S., Alirezazadeh M., Razeghi N., Rezaei M., Pourmahmood H., Dehbandi R., Mehr M.R. Microplastics captured by snowfall: A study in Northern Iran // Sci. Total Environ. 2022. V. 822. ID 153451. https://doi.org/10.1016/j.scitotenv.2022.153451
- Laju R.L., Jayanthi M., Jeyasanta K.I., Patterson J., Asir N.G.G., Sathish M.N., Edward J.K.P. Spatial and vertical distribution of microplastics and their ecological risk in an Indian freshwater lake ecosystem // Sci. Total Environ. 2022. V. 820. ID 153337. https://doi.org/10.1016/j.scitotenv.2022.153337
- Gniadek М., Dąbrowska А. The marine nano- and microplastics characterisation by SEM-EDX: The potential of the method in comparison with various physical and chemical approaches // Mar. Pollut. Bull. 2019. V. 148. P. 210. https://doi.org/10.1016/j.marpolbul.2019.07.067
- Blair R.M., Waldron S., Phoenix V.R., Gauchotte-Lindsay C. Microscopy and elemental analysis characterisation of microplastics in sediment of a freshwater urban river in Scotland, UK // Environ. Sci. Pollut. Res. 2019. V. 26. P. 12491. https://doi.org/10.1007/s11356-019-04678-1
- Patterson J., Jeyasanta K.I., Sathish N., Edward J.K.P., Booth A.M. Microplastic and heavy metal distributions in an Indian coral reef ecosystem // Sci. Total Environ. 2020. V. 744. ID 140706. https://doi.org/10.1016/j.scitotenv.2020.140706
- Dehghani S., Moore F., Akhbarizadeh R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran // Environ. Sci. Pollut. Res. Int. 2017. V. 24. P. 20360. https://doi.org/10.1007/s11356-017-9674-1
- Wight S.A., Zeissler C.J. Environmental scanning electron microscope imaging examples related to particle analysis // Microsc. Res. Tech. V. 25. № 5-6. P. 393. https://doi.org/10.1002/jemt.1070250507
- Li H., Chang X., Zhang J., Wang Y., Zhong R., Wang L., Wei J., Wang Y. Uptake and distribution of microplastics of different particle sizes in maize (Zea mays) seedling roots // Chemosphere. 2023. V. 313. ID 137491. https://doi.org/10.1016/j.chemosphere.2022.137491
- Shi B., Patel M., Yu D., Yan J., Li Z., Petriw D., Pruyn T., Smyth K., Passeport E., Miller R.J.D., Howe J.Y. Automatic quantification and classification of microplastics in scanning electron micrographs via deep learning // Sci. Total Environ. 2022. V. 825. ID 153903. https://doi.org/10.1016/j.scitotenv.2022.153903
- Li L., Luo Y., Li R. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode // Nat. Sustain. 2020. V. 3. P. 929. https://doi.org/10.1038/s41893-020-0567-9
- Naji A., Nuri M., Amiri P., Niyogi S. Small microplastic particles (S-MPPs) in sediments of mangrove ecosystem on the northern coast of the Persian Gulf // Mar. Pollut. Bull. 2019. V. 146. P. 305. https://doi.org/10.1016/j.marpolbul.2019.06.033
- Bonfanti P. Microplastics from miscellaneous plastic wastes: Physico-chemical characterization and impact on fish and amphibian development // Ecotoxicol. Environ. Saf. 2021. V. 225. ID 112775. https://doi.org/10.1016/j.ecoenv.2021.112775
- Liu Y., Wang Y., Jiang N., Li S. Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior // Sci. Total Environ. 2022. V. 806. ID 150681. https://doi.org/10.1016/j.scitotenv.2021.150681
- Cortés C., Domenech J., Salazar M., Pastor S., Marcos R., Hernández A. Nanoplastics as a potential environmental health factor: effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells // Environ. Sci.: Nano. 2020. V. 7. P. 272. https://doi.org/10.1039/C9EN00523D
- Wang Z., Saadé N.K., Ariya P.A. Advances in ultra-trace analytical capability for micro/nanoplastics and water-soluble polymers in the environment: fresh falling urban snow // Environ. Pollut. V. 2021. V. 276. ID 116698. https://doi.org/10.1016/j.envpol.2021.116698
- Caldwell J., Taladriz-Blanco P., Roman Lehner R., Lubskyy A., Ortuso R.D., Rothen-Rutishauser B., Petri-Fink A. The micro-, submicron-, and nanoplastic hunt: A review of detection methods for plastic particles // Chemosphere. 2022. V. 293. ID 133514. https://doi.org/10.1016/j.chemosphere.2022.133514
- Fu W., Min J., Jiang W., Li Y., Zhang W. Separation, characterization and identification of microplastics and nanoplastics in the environment // Sci. Total Environ. 2020. V. 721. ID 137561. https://doi.org/10.1016/j.scitotenv.2020.137561
- Nguyen-Tri P., Ghassemi P., Carriere P., Nanda S., Assadi A.A. Nguyen D.D. Recent applications of advanced atomic force microscopy in polymer science: A review // Polymers. 2020. V. 12. ID 1142. https://doi.org/10.3390/polym12051142
- Li D., Shi Y., Yang L., Xiao L., Kehoe D.K., Gun’ko Y.K., Boland J.J., Wang J.J. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation // Nat. Food. 2020. V. 1. P. 746. https://doi.org/10.1038/s43016-020-00171-y
- Kumari A., Chaudhary D.R., Jha, B. Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain // Environ. Sci. Pollut. Res. 2019. V. 26. P. 1507. https://doi.org/10.1007/s11356-018-3465-1
- Akhatova F., Ishmukhametov I., Fakhrullina G., Fakhrullin R. Nanomechanical atomic force microscopy to probe cellular microplastics uptake and distribution // Int. J. Mol. Sci. 2022. V. 23. P. 806. https://doi.org/10.3390/ijms23020806
- Luo H., Xiang Y., Li Y., Zhao Y., Pan X. Photocatalytic aging process of nano-TiO2 coated polypropylene microplastics: Combining atomic force microscopy and infrared spectroscopy (AFM-IR) for nanoscale chemical characterization // J. Hazard. Mater. 2020. V. 404. ID 124159. https://doi.org/10.1016/j.jhazmat.2020.124159
- Selvam S., Jesuraja K., Venkatramanan S., Roy P.D., Kumari V.J. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India // J. Hazard. Mater. 2021. V. 402. ID 123786. https://doi.org/10.1016/j.jhazmat.2020.123786
- Merzel R.L., Purser L., Soucy T.L., Olszewski M., Colón-Bernal I., Duhaime M., Elgin A.K., Banaszak Holl M.M. Uptake and retention of nanoplastics in quagga mussels // Global Challenges. 2020. V. 4. ID 1800104. https://doi.org/10.1002/gch2.201800104
- ten Have I.C., Duijndam A.J., Oord A.R., van Berlo-van den Broek H.J.M., Vollmer I., Weckhuysen B.M., Meirer F. Photoinduced force microscopy as an efficient method towards the detection of nanoplastics // Chem. Methods. 2021. V. 1. P. 205. https://doi.org/10.1002/cmtd.202100017205
- Li Y., Wang Z., Guan B. Separation and identification of nanoplastics in tap water // Environ. Res. 2022. V. 204. ID 112134. https://doi.org/10.1016/j.envres.2021.112134
- Moud А.A. Polymer blends analyzed with confocal laser scanning microscopy // Polym. Bull. 2023. V. 80. P. 5929. https://doi.org/10.1007/s00289-022-04394-w
- Li W., Luo Y., Pan X. Identification and characterization methods for microplastics basing on spatial imaging in micro-/nanoscales / Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry / Eds. He D., Luo Y. Springer, 2020. V. 95. P. 25. https://doi.org/10.1007/698_2020_446
- Caldwell J., Loussert-Fonta C., Toullec G., Lyndby N.H., Haenni B., Taladriz-Blanco P., Espiña B., Rothen-Rutishauser B., Petri-Fink A. Correlative light, electron microscopy and raman spectroscopy workflow to detect and observe microplastic interactions with whole jellyfish // Environ. Sci. Technol. 2023. V. 57. № 16. P. 6664. https://doi.org/10.1021/acs.est.2c09233
- Zhang C., Yue N., Li X., Shao H., Wang J., An L., Jin F. Potential translocation process and effects of polystyrene microplastics on strawberry seedlings // J. Hazard. Mater. 2023. V. 449. ID 131019. https://doi.org/10.1016/j.jhazmat.2023.131019
- Li L., Luo Y., Peijnenburg W.J.G.M., Li R., Yang J., Zhou Q. Confocal measurement of microplastics uptake by plants // MethodsX. 2020. V. 7. ID 100750. https://doi.org/10.1016/j.mex.2019.11.023
- Caldwell J., Lehner R., Balog S., Rhême C., Gao X., Septiadi D., Weder C., Alke Petri-Fink A., Rothen-Rutishauser B. Fluorescent plastic nanoparticles to track their interaction and fate in physiological environments // Environ. Sci.: Nano. 2021. V. 8. P. 502. https://doi.org/10.1039/D0EN00944J
- Melo-Agustín P., Kozak E.R., de Jesús Perea-Flores M., Mendoza-Pérez J.A. Identification of microplastics and associated contaminants using ultra high resolution microscopic and spectroscopic techniques // Sci. Total Environ. 2022. V. 828. ID 154434. https://doi.org/10.1016/j.scitotenv.2022.154434
- Thaiba B.M., Sedai T., Bastakoti S., Karki A., Anuradha K.C., Khadka G., Acharya S., Kandel B., Giri B., Neupane B.B. A review on analytical performance of micro- and nanoplastics analysis methods // Arab. J. Chem. 2023. V. 16. P. 104686. https://doi.org/10.1016/j.arabjc.2023.104686
- Wang W., Wang J. Investigation of microplastics in aquatic environments : An overview of the methods used, from field sampling to laboratory analysis // Trends Anal. Chem. 2018. V. 108. P. 195. https://doi.org/10.1016/j.trac.2018.08.026
- Поздняков Ш.Р., Иванова Е.В., Гузева А.В., Шалунова Е.П., Мартинсон К.Д., Тихонова Д.А. Исследование содержания частиц микропластика в воде, донных отложениях и грунтах прибрежной территории Невской губы Финского залива // Водные ресурсы. 2020. Т. 47. № 4. P. 411. https://doi.org/10.31857/S0321059620040148 (Pozdnyakov Sh.R., Ivanova E.V., Guzeva A.V., Martinson K.D., Tikhonova D.A., Shalunova E.P. Studying the concentration of microplastic particles in water, bottom sediments and subsoils in the coastal area of the Neva Bay, the Gulf of Finland // Water Resour. 2020. V. 47. № 4. P. 599. https://doi.org/10.1134/S0097807820040132)
- Käppler A., Fischer D., Oberbeckmann S., Schernewski G., Labrenz M., Eichhorn K.-J., Voit B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? // Anal. Bioanal. Chem. 2016. V. 408. P. 8377. https://doi.org/10.1007/s00216-016-9956-3
- Shim W.J., Hong S.H., Eo S. Identification methods in microplastic analysis: A review // Anal. Methods. 2017. № 9. P. 1384. https://doi.org/10.1039/C6AY02558G
- Harrison J.P., Ojeda J.J., Romero-González M.E. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments // Sci. Total Environ. 2012. V. 416. P. 455. https://doi.org/10.1016/j.scitotenv.2011.11.078
- Vianello A., Boldrin A., Guerriero P., Moschino V., Rella R., Sturaro A., Da Ros L. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification // Estuar. Coast. Shelf Sci. 2013. V. 130. P. 54. https://doi.org/10.1016/j.ecss.2013.03.022
- Löder M.G.J., Kuczera M., Mintenig S., Lorenz C., Gerdts G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples // Environ. Chem. 2015. V. 12. № 5. P. 563. https://doi.org/10.1071/EN14205
- Primpke S., Lorenz C., Rascher-Friesenhausenbc R., Gerdtsa G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis // Anal. Methods. Royal Society of Chemistry. 2017. V. 9. P. 1499. https://doi.org/10.1039/C6AY02476A
- Tagg A.S., Sapp M., Harrison J.P., Ojeda J.J. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging // Anal. Chem. 2015. V. 87. № 12. P. 6032. https://doi.org/10.1021/acs.analchem.5b00495
- Cincinelli A., Scopetani C., Chelazzi D., Lombardini E., Martellini T., Katsoyiannis A., Fossi M.C., Corsolini S. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR // Chemosphere. 2017. V. 175. P. 391. https://doi.org/10.1016/j.chemosphere.2017.02.024
- Huppertsberg S., Knepper T.P. Instrumental analysis of microplastics – benefits and challenges // Anal. Bioanal. Chem. 2018. V. 410. № 25. P. 6343. https://doi.org/10.1007/s00216-018-1210-8
- Serranti S., Fiore L., Bonifazi G., Takeshima A., TakeuchiH., Kashiwada S. Microplastics characterization by hyperspectral imaging in the SWIR range // SPIE Future Sensing Technologies. 2019. Article 1119710. https://doi.org/10.1117/12.2542793
- Karlsson T.M., Grahn H., van Bavel B., Geladi P. Hyperspectral imaging and data analysis for detecting and determining plastic contamination in seawater filtrates // J. Near Infrared Spectrosc. 2016. V. 24. P. 141. https://doi.org/10.1255/jnirs.1212
- Nguyen N.B., Kim M.-K., Le Q.T., Ngo G.N., Zoh K.-D., Joo S.-W. Spectroscopic analysis of microplastic contaminants in an urban wastewater treatment plant from Seoul, South Korea // Chemosphere. 2021. V. 263. Article 127812. https://doi.org/10.1016/j.chemosphere.2020.127812
- Pakhomova S., Zhdanov I., van Bavel B. Polymer type identification of marine plastic litter using a miniature near-infrared spectrometer (MicroNIR) // Appl. Sci. 2020. V. 10. № 23. P. 1. https://doi.org/10.3390/app10238707
- Araujo C.F., Nolasco M.M., Ribeiro A.M.P., Ribeiro-Claro P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects // Water Res. 2018. V. 142. P. 426. https://doi.org/10.1016/j.watres.2018.05.060
- Ghosal S., Chen M., Wagner J., Wang Z.-M., Wall S. Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach – A Raman micro-spectroscopy study // Environ. Pollut. 2018. V. 233. P. 1113. https://doi.org/10.1016/j.envpol.2017.10.014 https://assets.thermofisher.com/TFS-Assets/MSD/Application-Notes/WP53077-microplastics-identification-ftir-raman-guide.pdf (21.05.2025).
- Lenz R., Enders K., Stedmon C.A., Mackenzie D.M.A., Nielsen T.G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement // Mar. Pollut. Bull. 2015. V. 100. P. 82. https://doi.org/10.1016/j.marpolbul.2015.09.026
- Sobhani Z., Zhang X., Gibson C., Naidu R., Megharaj M., Fang C. Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): down to 100 nm // Water Res. 2020. V. 174. Article 115658. https://doi.org/10.1016/j.watres.2020.115658
- Fang C., Song Y.K., Sobhani Z., Zhang X., McCourt L., Routley B., Gibson C., Naidu R. Identification and visualisation of microplastics / nanoplastics by Raman imaging (iii): Algorithm to cross-check multi-images // Water Res. 2021. V. 194. Article 116913. https://doi.org/10.1016/j.watres.2021.116913
- Song Y.K., Hong S.H., Eo S., Shim W.J. A comparison of spectroscopic analysis methods for microplastics: Manual, semi-automated, and automated Fourier transform infrared and Raman techniques // Mar. Pollut. Bull. 2021. V. 173. Article 113101. https://doi.org/10.1016/j.marpolbul.2021.113101
- Oßmann B.E., Sarau G., Schmitt S.W., Holtmannspötter H., Christiansen S.H., Dicke W. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy // Anal. Bioanal. Chem. 2017. V. 409. № 16. P. 4099. https://doi.org/10.1007/s00216-017-0358-y
- Schymanski D., Goldbeck C., Humpf H.U., Fürst P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water // Water Res. 2018. V. 129. P. 154. https://doi.org/10.1016/j.watres.2017.11.011
- Peez N., Janiska M., Imhof W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS) // Anal. Bioanal. Chem. 2019. V. 411. P. 823. https://doi.org/10.1007/s00216-018-1510-z
- Peez N., Imhof W. Quantitative 1H-NMR spectroscopy as an efficient method for identification and quantification of PVC, ABS and PA microparticles // Analyst. 2020. V. 145. № 15. P. 5363. https://doi.org/10.1039/D0AN00879F
- Corti A., Vinciguerra V., Iannilli V., Pietrelli L., Manariti A., Bianchi S., Petri A., Cifelli M., Domenici V., Castelvetro V. Thorough multianalytical characterization and quantification of micro- and nanoplastics from Bracciano Lake’s sediments // Sustainability. 2020. V. 12. 878. https://doi.org/10.3390/su12030878
- Peez N., Rinesch T., Kolz J., Imhof W. Applicable and cost-efficient microplastic analysis by quantitative 1 H-NMR spectroscopy using benchtop NMR and NoD methods // Magn. Reson. Chem. 2022. V. 60. P. 172. https://doi.org/10.1002/mrc.5210
- Mauel A., Pötzschner B., Meides N., Siegel R., Strohriegl P., Senker J. Quantification of photooxidative defects in weathered microplastics using 13C multiCP NMR spectroscopy // RSC Adv. 2022. V. 12. P. 10875. https://doi.org/10.1039/D2RA00470D
- Castillo A.B., El-Azhary M., Sorino C., LeVay L. Potential ecological risk assessment of microplastics in coastal sediments: Their metal accumulation and interaction with sedimentary metal concentration // Sci. Total Environ. 2024. V. 906. Article 167473. https://doi.org/10.1016/j.scitotenv.2023.167473
- Barceló D. Microplastics in the environment: analytical chemistry methods, sorption materials, risks and sustainable solutions // Anal. Bioanal. Chem. 2024. V. 416. P. 3479. https://doi.org/10.1007/s00216-024-05319-4
- Jian M., Niu J., Li W., Huang Y., Yu H., Lai Z., Liu S., Xu E.G. How do microplastics adsorb metals? A preliminary study under simulated wetland conditions // Chemosphere. 2022. V. 309. Article 136547. https://doi.org/10.1016/j.chemosphere.2022.136547
- Elseblani R., Cobo-Golpe M., Godin S., Jimenez-Lamana J., Fakhri M., Rodríguez I., Szpunar J. Study of metal and organic contaminants transported by microplastics in the Lebanese coastal environment using ICP MS, GC-MS, and LC-MS // Sci. Total Environ. 2023. V. 887. Article 164111. https://doi.org/10.1016/j.scitotenv.2023.164111
- Shi M., Xie Q., Li Z.L., Pan Y.F., Yuan Z., Lin L., Xu X.R., Li H.X. Adsorption of heavy metals on biodegradable and conventional microplastics in the Pearl River Estuary, China // Environ. Pollut. 2023. V. 322. Article 121158. https://doi.org/10.1016/j.envpol.2023.121158
- Squadrone S., Pederiva S., Bezzo T., Sartor R.M., Battuello M., Nurra N., Griglione A. Brizio P., Abete M.C. Microplastics as vectors of metals contamination in Mediterranean Sea // Environ. Sci. Pollut. Res. 2022. V. 29. P. 29529. https://doi.org/10.1007/s11356-021-13662-7
- Kuznetsova O.V., Shtykov S.N., Timerbaev A.R. Mass spectrometry insight for assessing the destiny of plastics in seawater // Polymers. 2023. V. 15. Article 1523. https://doi.org/10.3390/polym15061523
- Kuznetsova O.V. Sector-field–inductively coupled plasma–mass spectrometry (SF-ICP-MS) for the determination of toxic metals in microplastics from seawater and beach sediments from the Barents and White seas // Anal. Lett. 2025. P. 1. https://doi.org/10.1080/00032719.2024.2449150
- Kuznetsova O.V. Quantification of the toxic metals in microplastics from seawater and beach sediments by SF-ICP-MS: Comparison of different sample preparation methods // Int. J. Environ. Anal. Chem. 2025. P. 1. https://doi.org/10.1080/03067319.2025.2461165
- Kutralam-Muniasamy G., Pérez-Guevara F., Martínez I.E., Shruti V.C. Overview of microplastics pollution with heavy metals: Analytical methods, occurrence, transfer risks and call for standardization // J. Hazard. Mater. 2021. V. 415. Article 125755. https://doi.org/10.1016/j.jhazmat.2021.125755
- Pořízka P., Brunnbauer L., Porkert M., Rozman U., Marolt G., Holub D., Kizovský M., Benešová M., Samek O., Limbeck A., Kaiser J., Kalčíková G. Laser-based techniques: Novel tools for the identification and characterization of aged microplastics with developed biofilm // Chemosphere. 2023. V. 313. Article 137373. https://doi.org/10.1016/j.chemosphere.2022.137373
- El Hadri H., Gigault J., Mounicou S., Grassl B., Reynaud S. Trace element distribution in marine microplastics using laser ablation-ICP-MS // Mar. Pollut. Bull. 2020. V. 160. Article 111716. https://doi.org/10.1016/j.marpolbul.2020.111716
- Chew D., Drost K., Marsh J.H., Petrus J.A. LA-ICP-MS imaging in the geosciences and its applications to geochronology // Chem. Geol. 2021. V. 559. Article 119917. https://doi.org/10.1016/j.chemgeo.2020.119917
- Bolea-Fernandez E., Rua-Ibarz A., Velimirovic M., Tirez K., Vanhaecke F. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode // J. Anal. At. Spectrom. 2020. V. 35. P. 455. https://doi.org/10.1039/C9JA00379G
- Hendriks L., Mitrano D.M. direct measurement of microplastics by carbon detection via single particle ICP-TOFMS in complex aqueous suspensions // Environ. Sci. Technol. 2023. V. 57. № 18. P. 7263. https://doi.org/10.1021/acs.est.3c01192
- Laborda F., Trujillo C., Lobinski R. Analysis of microplastics in consumer products by single particle-inductively coupled plasma mass spectrometry using the carbon-13 isotope // Talanta. 2021. V. 221. Article 121486. https://doi.org/10.1016/j.talanta.2020.121486
- Miyashita S.I., Groombridge A.S., Fujii S.I., Minoda A., Takatsu A., Hioki A., Chiba K., Inagaki K. Highly efficient single-cell analysis of microbial cells by time-resolved inductively coupled plasma mass spectrometry // J. Anal. At. Spectrom. 2014. V. 29. P. 1598. https://doi.org/10.1039/C4JA00040D
- Trujillo C., Pérez-Arantegui J., Lobinski R., Laborda F. Improving the detectability of microplastics in river waters by single particle inductively coupled plasma mass spectrometry // Nanomaterials. 2023. V. 13. Article 1582. https://doi.org/10.3390/nano13101582
- Liu Z., Zhu Y., Lv S., Shi Y., Dong S., Yan D., Zhu X., Peng R., Keller A.A., Huang Y. Quantifying the dynamics of polystyrene microplastics UV-aging process // Environ. Sci. Technol. Lett. 2022. V. 9. P. 50. https://doi.org/10.1021/acs.estlett.1c00888
- Mansor M., Drabesch S., Bayer T., Van Le A., Chauhan A., Schmidtmann J., Peiffer S., Kappler A. Application of single-particle ICP-MS to determine the mass distribution and number concentrations of environmental nanoparticles and colloids // Environ. Sci. Technol. Lett. 2021. V. 8. P. 589. https://doi.org/10.1021/acs.estlett.1c00314
- Gonzalez de Vega R., Goyen S., Lockwood T.E., Doble P.A., Camp E.F., Clases D. Characterisation of microplastics and unicellular algae in seawater by targeting carbon via single particle and single cell ICP-MS // Anal Chim Acta 2021. V. 1174. Article 338737. https://doi.org/10.1016/j.aca.2021.338737
- Nava V., Chandra S., Aherne J., Alfonso M.B., Antão-Geraldes A.M., Attermeyer K., Bao R., Bartrons M., Berger S.A., Biernaczyk M., Bissen R., Brookes J.D., Brown D., Cañedo-Argüelles M., Canle M., Capelli C., Carballeira R., Cereijo J.L., Chawchai S., Christensen S.T., Christoffersen K.S., de Eyto E., Delgado J., Dornan T.N., Doubek J.P., Dusaucy J., Erina O., Ersoy Z., Feuchtmayr H., Frezzotti M.L., Galafassi S., Gateuille D., Gonçalves V., Grossart H.P., Hamilton D.P., Harris T.D., Kangur K., Kankılıç G.B., Kessler R., Kiel C., Krynak E.M., Leiva-Presa À., Lepori F., Matias M.G., Matsuzaki S.S., McElarney Y., Messyasz B., Mitchell M., Mlambo M.C., Motitsoe S.N., Nandini S., Orlandi V., Owens C., Özkundakci D., Pinnow S., Pociecha A., Raposeiro P.M., Rõõm E.I., Rotta F., Salmaso N., Sarma S.S.S., Sartirana D., Scordo F., Sibomana C., Siewert D., Stepanowska K., Tavşanoğlu Ü.N., Tereshina M., Thompson J., Tolotti M., Valois A., Verburg P., Welsh B., Wesolek B., Weyhenmeyer G.A., Wu N., Zawisza E., Zink L., Leoni B. Plastic debris in lakes and reservoirs // Nature. 2023. V. 619. P. 317. https://doi.org/10.1038/s41586-023-06168-4
- Tian X., Jiang H., Hu L., Wang M., Cui W., Shi J., Liu G., Yin Y., Cai Y., Jiang G. Simultaneous multi-element and multi-isotope detection in single-particle ICP-MS analysis: Principles and applications // Trends Anal. Chem. 2022. V. 157. Article 116746. https://doi.org/10.1016/j.trac.2022.116746
- Gundlach-Graham A. Multiplexed and multi-metal single-particle characterization with ICP-TOFMS // Compr. Anal. Chem. 2021. V. 93. P. 69. https://doi.org/10.1016/bs.coac.2021.01.008
- Ермолин М.С., Федотов П.С. Выделение наночастиц из почвы и пыли и их исследование методом масс-спектрометрии с индуктивно связанной плазмой в режиме анализа единичных частиц // Журн. аналит. химии. 2023. Т. 78. № 9. С. 771. https://doi.org/10.31857/S0044450223090049 (Ermolin M.S., Fedotov P.S. Isolation of nanoparticles from soil and dust and their study by single particle inductively coupled plasma mass spectrometry // J. Anal. Chem. 2023. V. 78. P. 1115. https://doi.org/10.1134/S1061934823090046)
- Harycki S., Gundlach-Graham A. Characterization of a high-sensitivity ICP-TOFMS instrument for microdroplet, nanoparticle, and microplastic analyses // J. Anal. At. Spectrom. 2022. V. 38. P. 111. https://doi.org/10.1039/D2JA00295G
- Michener R., Lajtha K. Stable Isotopes in Ecology and Environmental Science. Second Ed. Blackwell Publishing Ltd., 2008. P. 566.
- Muccio Z., Jackson G.P. Isotope ratio mass spectrometry // Analyst. 2009. V. 134. P. 213. https://doi.org/10.1039/B808232D
- Chikaraishi Y., Suzuki Y., Naraoka H. Hydrogen isotopic fractionations during desaturation and elongation associated with polyunsaturated fatty acid biosynthesis in marine macroalgae // Phytochemistry. 2004. V. 65. P. 2293. https://doi.org/10.1016/j.phytochem.2004.06.030
- Kelly S., Heaton K., Hoogewerff J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis // Trends Food Sci. Technol. 2005. V. 16. P. 555. https://doi.org/10.1016/j.tifs.2005.08.008
- Smith B.N., Epstein S. Two categories of 13C/12C ratios for higher plants // Plant Physiol. 1971. V. 47. P. 380. https://doi.org/10.1104/pp.47.3.380
- Yeh H.W., Epstein S. Hydrogen and carbon isotopes of petroleum and related organic matter // Geochim. Cosmochim. Acta. 1981. V. 45. P. 753. https://doi.org/10.1016/0016-7037(81)90046-6
- Suzuki Y., Akamatsu F., Nakashita R., Korenaga T. A novel method to discriminate between plant- and petroleum-derived plastics by stable carbon isotope analysis // Chem. Lett. 2010. V. 39. P. 998. https://doi.org/10.1246/cl.2010.998
- Berto D., Rampazzo F., Gion C., Noventa S., Ronchi F., Traldi U., Giorgi G., Cicero A.M., Giovanardi O. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS) // Chemosphere. 2017. V. 176. P. 47. https://doi.org/10.1016/j.chemosphere.2017.02.090
- Birch Q.T., Potter P.M., Pinto P.X., Dionysiou D.D., Al-Abed S.R. Isotope ratio mass spectrometry and spectroscopic techniques for microplastics characterization // Talanta. 2021. V. 224. Article 121743. https://doi.org/10.1016/j.talanta.2020.121743
- Zhang Y., Zhang T., Li H. Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring // Spectrochim. Acta B: At. Spectrosc. 2021. V. 181. Article 106218. https://doi.org/10.1016/j.sab.2021.106218
- Chen D., Wang T., Ma Y., Wang G., Kong Q., Zhang P., Li R. Rapid characterization of heavy metals in single microplastics by laser induced breakdown spectroscopy // Sci. Total Environ. 2020. V. 743. Article 140850. https://doi.org/10.1016/j.scitotenv.2020.140850
- Chen X., Ali S., Yuan L., Guo F., Huang G., Shi W., Chen X. Characterization and source analysis of heavy metals contamination in microplastics by laser-induced breakdown spectroscopy // Chemosphere. 2022. V. 287. Article 132172. https://doi.org/10.1016/j.chemosphere.2021.132172
- Tognana S., D’Angelo C., Montecinos S., Pereyra M., Salgueiro W. Laser induced breakdown spectroscopy (LIBS) as a technique to detect copper in plastic and microplastic waste // Chemosphere. 2022. V. 303. Article 135168. https://doi.org/10.1016/j.chemosphere.2022.135168
- Sommer C., Schneider L.M., Nguyen J., Prume J.A., Lautze K., Koch M. Identifying microplastic litter with laser induced breakdown spectroscopy: A first approach // Mar. Pollut. Bull. 2021. V. 171. Article 112789. https://doi.org/10.1016/j.marpolbul.2021.112789
- Chamradová I., Pořízka P., Kaiser J. Laser-induced breakdown spectroscopy analysis of polymers in three different atmospheres // Polym. Test. 2021. V. 96. Article 107079. https://doi.org/10.1016/j.polymertesting.2021.107079
- Хабибуллин В.Р., Шевченко Н.Н., Проскурнин М.А. Определение наночастиц полистирола в водных растворах методом двулучевой термолинзовой спектрометрии // Журн. аналит. химии. 2024. Т. 79. № 12. С. 1335. https://doi.org/10.31857/S0044450224120069 (Khabibullin V.R., Shevchenko N.N., Proskurnin M.A. Determination of polystyrene nanoparticles in aqueous solutions by dual-beam thermal lens spectrometry // J. Anal. Chem. 2024. V. 79. P. 1779. https://doi.org/10.1134/S1061934824701351
- Martins I., Rodríguez Y., Pham C.K. Trace elements in microplastics stranded on beaches of remote islands in the NE Atlantic // Mar. Pollut. Bull. 2020. V. 156. Article 111270. https://doi.org/10.1016/j.marpolbul.2020.111270
- Li W., Lo H.S., Wong H.M., Zhou M., Wong C.Y., Tam N.F.Y., Cheung S.G. Heavy metals contamination of sedimentary microplastics in Hong Kong // Mar. Pollut. Bull. 2020. V. 153. Article 110977. https://doi.org/10.1016/j.marpolbul.2020.110977
- Maršić-Lučić J., Lušić J., Tutman P., Bojanić Varezić D., Šiljić J., Pribudić J. Levels of trace metals on microplastic particles in beach sediments of the island of Vis, Adriatic Sea, Croatia // Mar. Pollut. Bull. 2018. V. 137. P. 231. https://doi.org/10.1016/j.marpolbul.2018.10.027
- Munier B., Bendell L.I. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems // PLoS One. 2018. V. 13. Article e0191759. https://doi.org/10.1371/journal.pone.0191759
- Wilschefski S.C., Baxter M.R. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects // Clin. Biochem. Rev. 2019. V. 40. P. 115. https://doi.org/10.33176/AACB-19-00024
- Li Y., Wang Z., Guan B. Separation and identification of nanoplastics in tap water // Environ. Res. 2022. V. 204. Article 112134. https://doi.org/10.1016/j.envres.2021.112134
- Mariano S., Tacconi S., Fidaleo M., Rossi M., Dini L. Micro and nanoplastics identification: Classic methods and innovative detection techniques // Front. Toxicol. 2021. V. 3. Article 636640. https://doi.org/10.3389/ftox.2021.636640
- Jiménez-Skrzypek G., Lusiardi R., González-Sálamo J., Vega-Moreno D., Hernández-Borges J. Insights into emerging organic pollutants extraction from polypropylene, polystyrene, and polyethylene microplastics // Anal. Chim. Acta. 2024. V. 1287. Article 342071. https://doi.org/10.1016/j.aca.2023.342071
- Okoffo E.D., Ribeiro F., O'Brien J.W., O'Brien S., Tscharke B.J., Gallen M., Samanipour S., Mueller J.F., Thomas K.V. Identification and quantification of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography–mass spectrometry // Sci. Total Environ. 2020. V. 715. Article 136924. https://doi.org/10.1016/j.scitotenv.2020.136924
- La Nasa J., Biale G., Fabbri D., Moduglo F. A review on challenges and developments of analytical pyrolysis and other thermoanalytical techniques for the quali-quantitative determination of microplastics // J. Anal. Appl. Pyrolysis. 2020. Vol. 149. Article 104841. https://doi.org/10.1016/j.jaap.2020.104841
- La Nasa J., Biale G., Mattonai M., Modugno F. Microwave-assisted solvent extraction and double-shot analytical pyrolysis for the quali-quantitation of plasticizers and microplastics in beach sand samples // J. Hazard. Mater. 2021. V. 401. Article 123287. https://doi.org/10.1016/j.jhazmat.2020.123287
- Matsui K., Ishimura T., Mattonai M., Iwai I., Watanabe A., Teramae N., Ohtani H., Watanabe C. Identification algorithm for polymer mixtures based on Py-GC/MS and its application for microplastic analysis in environmental samples // J. Anal. Appl. Pyrolysis. 2020. V. 149. Article 104834. https://doi.org/10.1016/j.jaap.2020.104834
- Vilakati B., Sivasankar V., Mamba B.B., Omine K., Msagati T.A.M. Characterization of plastic micro particles in the Atlantic Ocean seashore of Cape Town, South Africa and mass spectrometry analysis of pyrolyzate products // Environ. Pollut. 2020. V. 265. Article 114859. https://doi.org/10.1016/j.envpol.2020.114859
- Nuelle M.T., Dekiff J.H., Remy D., Fries E. A new analytical approach for monitoring microplastics in marine sediments // Environ. Pollut. 2014. V. 184. P. 161. https://doi.org/10.1016/j.envpol.2013.07.027
- Mizukawa K., Takada H., Ito M., Geok Y.B., Hosoda J., Yamashita R., Saha M., Suzuki S., Miguez C., Frias J., Antunes J.C., Sobral P., Santos I., Micaelo C., Ferreira A.M. Monitoring of a wide range of organic micropollutants on the Portuguese coast using plastic resin pellets // Mar. Pollut. Bull. 2013. V. 70. № 1–2. P. 296. https://doi.org/10.1016/j.marpolbul.2013.02.008
- Tianniam S., Bamba T., Fukusaki E. Pyrolysis GC-MS-based metabolite fingerprinting for quality evaluation of commercial Angelica acutiloba roots // J. Biosci. Bioeng. 2010. V. 109. № 1. P. 89. https://doi.org/10.1016/j.jbiosc.2009.06.025
- Fabbri D., Tartari D., Trombini C. Analysis of poly(vinyl chloride) and other polymers in sediments and suspended matter of a coastal lagoon by pyrolysis-gas chromatography-mass spectrometry // Anal. Chim. Acta. 2000. V. 413. P. 3. https://doi.org/10.1016/S0003-2670(00)00766-2
- Dümichen E., Eisentraut P., Bannick C.G., Barthel A.K., Senz R., Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method // Chemosphere. 2017. V. 174. P. 572. https://doi.org/10.1016/j.chemosphere.2017.02.010
- Dümichen E., Braun U., Senz R., Fabian G., Sturm H. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal // J. Chromatogr. A. 2014. V. 1354. P. 117. https://doi.org/10.1016/j.chroma.2014.05.057
- Elert A.M., Becker R., Duemichen E., Eisentraut P., Falkenhagen J., Sturm H., Braunet U. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? // Environ. Pollut. 2017. V. 231. P. 1256. https://doi.org/10.1016/j.envpol.2017.08.074
- Picó Y., Barceló D. Pyrolysis gas chromatography-mass spectrometry in environmental analysis: Focus on organic matter and microplastics // Trends Anal. Chem. 2020. V. 130. Article 115964. https://doi.org/10.1016/j.trac.2020.115964
- Tan X., Yu X., Cai L., Wang J., Peng J. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China // Chemosphere. 2019. V. 221. P. 834. https://doi.org/10.1016/j.chemosphere.2019.01.022
- Sullivan G.L., Gallardo J.D., Jones E.W., Hollliman P.J., Watson T.M., Sarp S. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF). // Chemosphere. 2020. V. 249. Article 126179. https://doi.org/10.1016/j.chemosphere.2020.126179
- Sotnikova Y.S., Karpova E.V., Song D.I., Polovyanenko D.N., Kuznetsova T.A., Rodionova S.G., Bagryanskaya E.G. The development of an analytical procedure for the determination of microplastics in freshwater ecosystems // Anal. Methods. 2024. V. 16. P. 8019. https://doi.org/10.1039/D4AY01279H
- Scherer C., Weber A., Stock F., Vurusic S., Egerci H., Kochleus C., Arendt N., Foeldi C., Dierkes G., Wagner M., Brennholt N., Reifferscheid G. Comparative assessment of microplastics in water and sediment of a large European river // Sci. Total Environ. 2020. V. 738. Article 139866. https://doi.org/10.1016/j.scitotenv.2020.139866
- Ермолин М.С., Иванеев А.И., Савонина Е.Ю., Дженлода Р.Х. Выделение микропластика из речной воды во вращающейся спиральной колонке с использованием системы вода-масло // Журн. аналит. химии. 2025. Т. 80. № 3. С. 254. https://doi.org/10.31857/S0044450225030024 (Ermolin M.S., Ivaneev A.I., Savonina E.Yu., Dzhenloda R.Kh. Extraction of microplastics from river water in a rotating coiled column using a water–oil system // J. Anal. Chem. 2025. V. 80. No. 3. Р. 430.)
- Funck M., Yildirim A., Nickel C., Schram J., Schmidt T.C., Tuerk J. Identification of microplastics in wastewater after cascade filtration using Pyrolysis-GC–MS // MethodsX. 2020. V. 7. Article 100778. https://doi.org/10.1016/j.mex.2019.100778
- Minor E.C., Lin R., Burrows A., Cooney E.M., Grosshuesch S., Lafrancois B. Minor E.C. An analysis of microlitter and microplastics from Lake Superior beach sand and surface-water // Sci. Total Environ. 2020. V. 744. Article 140824. https://doi.org/10.1016/j.scitotenv.2020.140824
- Hermabessiere L., Himber C., Boricaud B., Kazour M., Amara R., Cassone A.L., Laurentie M., Paul-Pont I., Soudant P., Dehaut A., Duflos G. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics // Anal. Bioanal. Chem. 2018. V. 410. № 25. P. 6663. https://doi.org/10.1007/s00216-018-1279-0
- Mintenig S.M., Bäuerlein P.S., Koelmans A.A., Dekker S.C., van Wezel A.P. Closing the gap between small and smaller: Towards a framework to analyse nano- and microplastics in aqueous environmental samples // Environ. Sci.: Nano. 2018. V. 5. № 7. P. 1640. https://doi.org/10.1039/C8EN00186C
- Akoueson F., Chbib C., Monchy S., Paul-Pont I., Doyen P., Dehaut A., Duflos G. Identification and quantification of plastic additives using pyrolysis-GC/MS: A review // Sci. Total Environ. 2021. V. 773. Article 145073. https://doi.org/10.1016/j.scitotenv.2021.145073
- Reichel J., Graßmann J., Letzel T., Drewes J.E. Systematic Development of a simultaneous determination of plastic particle identity and adsorbed organic compounds by thermodesorption–pyrolysis GC/MS (TD-Pyr-GC/MS) // Molecules. 2020. V. 25. № 21. 4985. https://doi.org/10.3390/molecules25214985
- Dümichen E., Barthel A.K., Braun U., Bannick C.G., Brand K., Jekel M., Senz R. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method // Water Res. 2015. V. 85. P. 451. https://doi.org/10.1016/j.watres.2015.09.002
- Duemichen E., Eisentraut P., Celina M., Braun U. Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products // J. Chromatogr. A. 2019. V. 1592. P. 133. https://doi.org/10.1016/j.chroma.2019.01.033
- Chen C.F., Ju Y.R., Lim Y.C., Hsu N.H., Lu K.T., Hsieh S.L., Dong C.D., Chen C.W. Microplastics and their affiliated PAHs in the sea surface connected to the southwest coast of Taiwan // Chemosphere. 2020. V. 254. Article 126818. https://doi.org/10.1016/j.chemosphere.2020.126818
- Yeo B.G., Takada H., Yamashita R., Okazaki Y., Uchida K., Tokai T., Tanaka K., Trenholm N. PCBs and PBDEs in microplastic particles and zooplankton in open water in the Pacific Ocean and around the coast of Japan // Mar. Pollut. Bull. 2020. V. 151. Article 110806. https://doi.org/10.1016/j.marpolbul.2019.110806
- Antunes J.C., Frias J.G.L., Micaelo A.C., Sobral P. Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants // Estuar. Coast. Shelf Sci. 2013. V. 130. P. 62. https://doi.org/10.1016/j.ecss.2013.06.016
- Van A., Rochman C.M., Flores E.M., Hill K.L., Vargas E., Vargas S.A., Hoh E. Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California // Chemosphere. 2012. V. 86. № 3. P. 258. https://doi.org/10.1016/j.chemosphere.2011.09.039
- Seidensticker S., Grathwohl P., Lamprecht J., Zarfl C. A combined experimental and modeling study to evaluate pH-dependent sorption of polar and non-polar compounds to polyethylene and polystyrene microplastics // Environ. Sci. Eur. 2018. V. 30. P. 30. https://doi.org/10.1186/s12302-018-0155-z
- Qiu Y., Zheng M., Wang L., Zhao Q., Lou Y., Shi L., Qu L. Sorption of polyhalogenated carbazoles (PHCs) to microplastics // Mar. Pollut. Bull. 2019. V. 146. P. 718. https://doi.org/10.1016/j.marpolbul.2019.07.034
- Xu P., Ge W., Chai C., Zhang Y., Jiang T., Xia B. Sorption of polybrominated diphenyl ethers by microplastics // Mar. Pollut. Bull. 2019. V. 145. P. 260. https://doi.org/10.1016/j.marpolbul.2019.05.050
- Müller A., Becker R., Dorgerloh U., Simon F.G., Braun U. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics // Environ. Pollut. 2018. V. 240. P. 639. https://doi.org/10.1016/j.envpol.2018.04.127
- Jiménez-Skrzypek G., Ortega-Zamora C., González-Sálamo J., Hernández-Sánchez C., Hernández-Borges J. The current role of chromatography in microplastic research: Plastics chemical characterization and sorption of contaminants // J. Chromatogr. Open. 2021. V. 1. Article 100001. https://doi.org/10.1016/j.jcoa.2021.100001
- Müller A., Goedecke C., Eisentraut P., Piechotta C., Braun U. Microplastic analysis using chemical extraction followed by LC-UV analysis: A straightforward approach to determine PET content in environmental samples // Environ. Sci. Eur. 2020. V. 32. № 1. P. 1. https://doi.org/10.1186/s12302-020-00358-x
- Castelvetro V., Corti A., Ceccarini A., Petri A., Vinciguerra V. Nylon 6 and nylon 6,6 micro- and nanoplastics: A first example of their accurate quantification, along with polyester (PET), in wastewater treatment plant sludges // J. Hazard. Mater. 2021. V. 407. Article 124364. https://doi.org/10.1016/j.jhazmat.2020.124364
- Liu C., Li J., Zhang Y., Wang L., Deng J., Gao Y., Yu L., Zhang J., Sun H. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure // Environ. Int. 2019. V. 128. P. 116. https://doi.org/10.1016/j.envint.2019.04.024
- Zhang J., Wang L., Halden R.U., Kannan K. Polyethylene terephthalate and polycarbonate microplastics in sewage sludge collected from the United States // Environ. Sci. Technol. Lett. 2019. V. 6. № 11. P. 650. https://doi.org/10.1021/acs.estlett.9b00601
- Llorca M., Vega-Herrera A., Schirinzi G., Savva K., Abad E., Farré M. Screening of suspected micro(nano)plastics in the Ebro Delta (Mediterranean Sea) // J. Hazard. Mater. 2021. V. 404. Article 124022. https://doi.org/10.1016/j.jhazmat.2020.124022
- Schirinzi G.F., Llorca M., Seró R., Moyano E., Barceló D., Abad E., Farré M. Trace analysis of polystyrene microplastics in natural waters // Chemosphere. 2019. V. 236. Article 124321. https://doi.org/10.1016/j.chemosphere.2019.07.052
- Müller Y.K., Wernicke T., Pittroff M., Witzig C.S., Storck F.R., Klinger J., Zumbülte N. Microplastic analysis—are we measuring the same? Results on the first global comparative study for microplastic analysis in a water sample // Anal. Bioanal. Chem. 2020. V. 412. № 3. P. 555. https://doi.org/10.1007/s00216-019-02311-1
- Castelvetro V., Corti A., Bianchi S., Ceccarini A., Manariti A., Vinciguerra V. Quantification of poly(ethylene terephthalate) micro- and nanoparticle contaminants in marine sediments and other environmental matrices // J. Hazard. Mater. 2020. V. 385. Article 121517. https://doi.org/10.1016/j.jhazmat.2019.121517
- Wang L., Zhang J., Hou S., Sun H. A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography-tandem mass spectrometry // Environ. Sci. Technol. Lett. 2017. V. 4. № 12. P. 530. https://doi.org/10.1021/acs.estlett.7b00454
- Wang L., Peng Y., Xu Y., Zhang J., Zhang T., Yan M., Sun H. An in situ depolymerization and liquid chromatography–tandem mass spectrometry method for quantifying polylactic acid microplastics in environmental samples // Environ. Sci. Technol. 2022. V. 56. № 18. P. 13029. https://doi.org/10.1021/acs.est.2c02221
- Zhao L., Rong L., Xu J., Lian J., Wang L., Sun H. Sorption of five organic compounds by polar and nonpolar microplastics // Chemosphere. 2020. V. 257. Article 127206. https://doi.org/10.1016/j.chemosphere.2020.127206
- Zhang P., Huang P., Sun H., Ma J., Li B. The structure of agricultural microplastics (PT, PU and UF) and their sorption capacities for PAHs and PHE derivates under various salinity and oxidation treatments // Environ. Pollut. 2020. V. 257. Article 113525. https://doi.org/10.1016/j.envpol.2019.113525
- Bayo J., Martínez A., Guillén M., Olmos S., Roca M.J., Alcolea A. Microbeads in commercial facial cleansers: Threatening the environment // Clean – Soil, Air, Water. 2017. V. 45. № 7. Article 1600683. https://doi.org/10.1002/clen.201600683
- Guo X., Wang J. Sorption of antibiotics onto aged microplastics in freshwater and seawater // Mar. Pollut. Bull. 2019. V. 149. 110511. https://doi.org/10.1016/j.marpolbul.2019.110511
- Wu P., Cai Z., Jin H., Tang Y. Adsorption mechanisms of five bisphenol analogues on PVC microplastics // Sci. Total Environ. 2019. V. 650. P. 671. https://doi.org/10.1016/j.scitotenv.2018.09.049
- Wu C., Zhang K., Huang X., Liu J. Sorption of pharmaceuticals and personal care products to polyethylene debris // Environ. Sci. Pollut. Res. 2016. V. 23. № 9. P. 8819. https://doi.org/10.1007/s11356-016-6121-7
- Razanajatovo R.M., Ding J., Zhang S., Jiang H., Zou H. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics // Mar. Pollut. Bull. 2018. V. 136. P. 516. https://doi.org/10.1016/j.marpolbul.2018.09.048
- Wang Y., Wang X., Li Y., Li J., Wang F., Xia S., Zhao J. Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics // Chem. Eng. J. 2020. V. 392. Article 123808. https://doi.org/10.1016/j.cej.2019.123808
- Nguyen T.B., Ho T.B., Huang C.P., Chen C.W., Hsieh S.L., Tsai W.P., Dong C.D. Adsorption characteristics of tetracycline onto particulate polyethylene in dilute aqueous solutions // Environ. Pollut. 2021. V. 285. Article 117398. https://doi.org/10.1016/j.envpol.2021.117398
- Wang T., Yu C., Chu Q., Wang F., Lan T., Wang J. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films // Chemosphere. 2020. V. 244. Article 125491. https://doi.org/10.1016/j.chemosphere.2019.125491
- Subair A., Krishnamoorthy Lakshmi P., Chellappan S., Chinghakham C. Removal of polystyrene microplastics using biochar-based continuous flow fixed-bed column // Environ. Sci. Pollut. Res. 2024. V. 31. № 9. P. 13753. https://doi.org/10.1007/s11356-024-32088-5
- Hintersteiner I., Himmelsbach M., Buchberger W.W. Characterization and quantitation of polyolefin microplastics in personal-care products using high-temperature gel-permeation chromatography // Anal. Bioanal. 2015. V. 407. № 4. P. 1253. https://doi.org/10.1007/s00216-014-8318-2
- Liu X., Sun P., Qu G., Jing J., Zhang T., Shi H., Zhao Y. Insight into the characteristics and sorption behaviors of aged polystyrene microplastics through three type of accelerated oxidation processes // J. Hazard. Mater. 2021. V. 407. Article 124836. https://doi.org/10.1016/j.jhazmat.2020.124836
- Song Y., Qiu R., Hu J., Li X., Zhang X., Chen Y., Wu W.M., He D. Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica // Sci. Total Environ. 2020. V. 746. Article 141289. https://doi.org/10.1016/j.scitotenv.2020.141289
- Biver T., Bianchi S., Carosi M.R., Ceccarini A., Corti A., Manco E., Castelvetro V., Biver T. Selective determination of poly(styrene) and polyolefin microplastics in sandy beach sediments by gel permeation chromatography coupled with fluorescence detection // Mar. Pollut. Bull. 2018. V. 136. P. 269. https://doi.org/10.1016/j.marpolbul.2018.09.024
- Liu H., Liu K., Fu H., Ji R., Qu X. Sunlight mediated cadmium release from colored microplastics containing cadmium pigment in aqueous phase // Environ. Pollut. 2020. V. 263. Article 114484. https://doi.org/10.1016/j.envpol.2020.114484
- Chen Z., Zhao W., Xing R., Xie S., Yang X., Cui P., Lü J., Liao H., Yu Z., Wang S., Zhou S. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology // J. Hazard. Mater. 2020. V. 384. Article 121271. https://doi.org/10.1016/j.jhazmat.2019.121271
- Wu Q., Tao H., Wong M.H. Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. // Environ. Geochem. Health. 2019. V. 41. № 1. P. 17. https://doi.org/10.1007/s10653-018-0161-5
- Ceccarini A., Corti A., Erba F., Modugno F., La Nasa J., Bianchi S., Castelvetro V. The hidden microplastics: New insights and figures from the thorough separation and characterization of microplastics and of their degradation byproducts in coastal sediments // Environ. Sci. Technol. 2018. V. 52. № 10. P. 5634. https://doi.org/10.1021/acs.est.8b01487
- David J., Weissmannová H.D., Steinmetz Z., Kabelíková L., Demyan M.S., Šimečková J., Tokarski D., Siewert C., Schaumann G.E., Kučerík J. Introducing a soil universal model method (SUMM) and its application for qualitative and quantitative determination of poly(ethylene), poly(styrene), poly(vinyl chloride) and poly(ethylene terephthalate) microplastics in a model soil // Chemosphere. 2019. V. 225. P. 810. https://doi.org/10.1016/j.chemosphere.2019.03.078
- Mansa R., Zou S. Thermogravimetric analysis of microplastics: A mini review // Environ. Adv. 2021. V. 5. Article 100117. https://doi.org/10.1016/j.envadv.2021.100117
- Peñalver R., Arroyo-Manzanares N., López-García I., Hernández-Córdoba M. An overview of microplastics characterization by thermal analysis // Chemosphere. 2020. V. 242. Article 125170. https://doi.org/10.1016/j.chemosphere.2019.125170
- Costa-Gómez I., Suarez-Suarez M., Moreno J.M., Moreno-Grau S., Negral L., Arroyo-Manzanares N., López-García I., Peñalver R. A novel application of thermogravimetry-mass spectrometry for polystyrene quantification in the PM10 and PM2.5 fractions of airborne microplastics // Sci. Total Environ. 2023. V. 856. Article 159041. https://doi.org/10.1016/j.scitotenv.2022.159041
- Peñalver R., Costa-Gómez I., Arroyo-Manzanares N., Moreno J.M., López-García I., Moreno-Grau S., Córdoba M.H. Assessing the level of airborne polystyrene microplastics using thermogravimetry-mass spectrometry: Results for an agricultural area // Sci. Total Environ. 2021. V. 787. Article 147656. https://doi.org/10.1016/j.scitotenv.2021.147656
- de la Fuente A.M., Marhuenda-Egea F.C., Ros M., Pascual J.A., Saez-Tovar J.A., Martinez-Sabater E., Peñalver R. Thermogravimetry coupled with mass spectrometry successfully used to quantify polyethylene and polystyrene microplastics in organic amendments // Environ. Res. 2022. V. 213. Article 113583. https://doi.org/10.1016/j.envres.2022.113583
- Chialanza R., Sierra M., Pérez Parada I., Fornaro L.A. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry // Environ. Sci. Pollut. Res. 2018. V. 25. P. 16767. https://doi.org/10.1007/s11356-018-1846-0
- Shabaka S.H., Ghobashy M., Marey R.S. Identification of marine microplastics in Eastern Harbor, Mediterranean Coast of Egypt, using differential scanning calorimetry // Mar. Pollut. Bull. 2019. V. 142. P. 494. https://doi.org/10.1016/j.marpolbul.2019.03.062
- Majewsky M., Bitter H., Eiche E., Horn H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC) // Sci. Total Environ. 2016. V. 568. P. 507. https://doi.org/10.1016/j.scitotenv.2016.06.017
- Sorolla-Rosario D., Llorca-Porcel J., Pérez-Martínez M., Lozano-Castelló D., Bueno-López F. Study of microplastics with semicrystalline and amorphous structure identification by TGA and DSC // J. Environ. Chem. Eng. 2022. V. 10. № 1. Article 106886. https://doi.org/10.1016/j.jece.2021.106886
Supplementary files
