Methods of the Investigation and Chemical Analysis of Microplastics and the Determination of Associated Compounds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Microplastic emissions to the environment increase every year. Over the past twenty years after the first publication on the study of microplastics, the problem of the global environmental pollution by synthetic materials has been confirmed, its toxicological effect has been proven at all levels of the organization of biosystems, including human health. Spectral, chromatographic, microscopic, and thermal methods of analysis are used to study microplastics. This review considers these groups of methods in the context of their application to the identification of microplastics and the determination of toxic substances associated with them.

About the authors

M. S. Ermolin

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: ermolin@geokhi.ru
Kosygina St., 19, Moscow, 119991 Russia

O. N. Katasonova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: ermolin@geokhi.ru
Kosygina St., 19, Moscow, 119991 Russia

Y. N. Romanova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: ermolin@geokhi.ru
Kosygina St., 19, Moscow, 119991 Russia

R. K. Dzhenloda

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: ermolin@geokhi.ru
Kosygina St., 19, Moscow, 119991 Russia

References

  1. Lau W.W.Y., Shiran Y., Bailey R.M., Cook E., Stuchtey M.R., Koskella J., Velis C.A., Godfrey L., Boucher J., Murphy M.B., Thompson R.C., Jankowska E., Castillo A.C., Pilditch T.D., Dixon B., Koerselman L., Kosior E., Favoino E., Gutberlet J., Baulch S., Atreya M.E., Fischer D., He K.K., Petit M.M., Sumaila U.R., Neil E., Bernhofen M.V., Lawrence K., Palardy J.E. Evaluating scenarios toward zero plastic pollution // Science. 2020. V. 369. P. 1465. https://doi.org/10.1126/science.aba9475
  2. Thompson R.C., Courtene-Jones W., Boucher J., Pahl S., Raubenheimer K., Koelmans A.A. Twenty years of microplastic pollution research – what have we learned? // Science. 2024. V. 386. https://doi.org/10.1126/science.adl2746
  3. Thompson R.C., Olsen Y., Mitchell R.P., Davis A., Rowland S.J., John A.W.G., McGonigle D., Russell A.E. Lost at sea: Where is all the plastic? // Science. 2004. V. 304. № 5672. P. 838. https://doi.org/10.1126/science.1094559
  4. Ермолин М.С. Оценка содержания микропластика в природных водах и донных отложениях: пробоотбор и пробоподготовка // Журн. аналит. химии. 2024. Т. 79. № 5. С. 440. (Ermolin M.S. Assessment of the Microplastics Content in Natural Waters and Sediments: Sampling and Sample Preparation // J. Anal. Chem. 2024. V. 79. № 5. P. 500. https://doi.org/10.1134/S1061934824050058
  5. Vitali C., Peters R.J.B., Janssen H.G., Nielen M.W.F., Ruggeri F.S. Microplastics and nanoplastics in food, water, and beverages, part II. Methods // Trends Anal. Chem. 2022. V. 157. Article 116819. https://doi.org/10.1016/j.trac.2022.116819
  6. Sajad S., Allam B.K., Mushtaq Z., Banerjee S. Microplastic detection and analysis from water and sediment: A review // Macromol. Symp. 2023. V. 407. № 1. P. 2100367. https://doi.org/10.1002/masy.202100367
  7. Mandemaker L.D.B., Meirer F. Spectro-microscopic techniques for studying nanoplastics in the environment and in organisms // Angew. Chem. Int. Ed. 2023, V. 62. Article e20221049. https://doi.org/10.1002/anie.202210494
  8. Ivleva N.P. Chemical analysis of microplastics and nanoplastics: Challenges, advanced methods, and perspectives // Chem. Rev. 2021. V. 121. № 19. P. 11886. https://doi.org/10.1021/acs.chemrev.1c00178
  9. Oz¨ genç̧ E. Advanced analytical techniques for assessing and detecting microplastic pollution in water and wastewater systems // Environ. Qual. Manage. 2024. V. 34. Article e22217. https://doi.org/10.1002/tqem.22217
  10. Kalaronis D., Ainali N.M., Evgenidou E., Kyzas G.Z., Yang X., Bikiaris D.N., Lambropoulou D.A. Microscopic techniques as means for the determination of microplastics and nanoplastics in the aquatic environment: A concise review // Green Anal. Chem. 2022. V. 3. ID 100036. https://doi.org/10.1016/j.greeac.2022.100036
  11. Mariano S., Tacconi S., Fidaleo M., Rossi M., Dini L. Micro and nanoplastics identification: classic methods and innovative detection techniques // Front. Toxicol. 2021. V. 3. ID 636640. https://doi.org/10.3389/ftox.2021.636640
  12. Crawford C.B., Quinn B. 10 – Microplastic identification techniques / Microplastic Pollutants / Elsevier, 2017. P. 219. https://doi.org/10.1016/B978-0-12-809406-8.00010-4
  13. Tran T.V., Jalil A.A., Nguyen T.M., Nguyen T.T.T., Nabgan W., Nguyen D.T.C. A review on the occurrence, analytical methods, and impact of microplastics in the environment // Environ. Toxicol. Pharmacol. 2023. V. 102. ID 104248. https://doi.org/10.1016/j.etap.2023.104248
  14. Jung S., Cho S-H., Kim K.-H, Kwon E.E. Progress in quantitative analysis of microplastics in the environment: A review // Chem. Eng. J. 2021. V. 422. ID 130154. https://doi.org/10.1016/j.cej.2021.130154
  15. Song Y.K., Hong S.H., Jang M., Han G.M., Rani M., Lee J., Shim W.J. A comparison of microscopic and spectroscopic identification methods for analysis of MPs in environmental samples // Mar. Pollut. Bull. 2015. V. 93. P. 202. https://doi.org/10.1016/j.marpolbul.2015.01.015
  16. Randhawa J.S. Advanced analytical techniques for microplastics in the environment: a review // Bull. Natl. Res. Cent. 2023. V. 47. ID 174. https://doi.org/10.1186/s42269-023-01148-0
  17. Primpke S., Christiansen S.H., Cowger W., De Frond H., Deshpande A., Fischer M., Holland E.B., Meyns M., O'Donnell B.A.O., Ossmann B.E., Pittroff M., Sarau G., Scholz-Böttcher B.M., Wiggin K.J. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics // Appl. Spectr. 2020. V. 74. № 9. P. 1012. https://doi.org/10.1177/0003702820921465
  18. Abbasi S. Prevalence and physicochemical characteristics of microplastics in the sediment and water of Hashilan Wetland, a national heritage in NW Iran // Environ. Technol. Innov. 2021. V. 23. ID 101782. https://doi.org/10.1016/j.eti.2021.101782
  19. Sierra I., Chialanza M.R., Faccio R., Carrizo D., Fornaro L., Pérez-Parada A. Identification of microplastics in wastewater samples by means of polarized light optical microscopy // Environ. Sci. Pollut. Res. 2020. V. 27. P. 7409. https://doi.org/10.1007/s11356-019-07011-y
  20. Chialanza M.R., Sierra, I., Parada A.P., Fornaro L. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry // Environ. Sci. Pollut. Res. 2018. V. 25. P. 16767. https://doi.org/10.1007/s11356-018-1846-0
  21. Karpenko A.A., Odintsov V.S., Istomina, A.A. Micro-nano-sized polytetrafluoroethylene (teflon) particles as a model of plastic pollution detection in living organisms // Environ. Sci. Pollut. Res. 2020. V. 29. P. 11281. https://doi.org/10.1007/s11356-021-16487-6
  22. Li Y., Zhu Y., Huang J., Ho Y-W., Fang J.K-H., Lam E.Y. High-throughput microplastic assessment using polarization holographic imaging // Sci. Rep. 2024. V. 14. ID 2355. https://doi.org/10.1038/s41598-024-52762-5
  23. Zhu Y., Li Y., Huang J., Lam E.Y. Smart polarization and spectroscopic holography for real-time microplastics identification // Commun. Eng. 2024. V. 3. ID 32. https://doi.org/10.1038/s44172-024-00178-4
  24. Peller J.R., Mezyk S.P., Shidler S., Castleman J., Kaiser S., Faulkner R.F., Pilgrim C.D., Wilson A., Martens S., Horne G.P. Facile nanoplastics formation from macro and microplastics in aqueous media // Environ. Pollut. 2022. V. 313. ID 120171. https://doi.org/10.1016/j.envpol.2022.120171
  25. Fakhrullin R., Nigamatzyanova L., Fakhrullina G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research // Sci. Total Environ. 2021. V. 772. ID 145478. https://doi.org/10.1016/j.scitotenv.2021.145478
  26. Sridhar A., Kannan D., Kapoor A., Prabhakar S. Extraction and detection methods of microplastics in food and marine systems: A critical review // Chemosphere. 2022. V. 286. ID 131653 https://doi.org/10.1016/j.chemSphere.2021.131653
  27. Shan J.,Zhao J., Zhang Y., Liu L., Wu F., Wang X. Simple and rapid detection of microplastics in seawater using hyperspectral imaging technology // Anal. Chim. Acta. 2019. V. 1050. P. 161. https://doi.org/10.1016/j.aca.2018.11.008
  28. Nigamatzyanova L., Fakhrullin R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study // Environ. Pollut. 2021. V. 271. ID 116337. https://doi.org/10.1016/j.envpol.2020.116337
  29. Batasheva S., Akhatova F., Abubakirov N., Fakhrullin R. Probing nanoplastics derived from polypropylene face masks with hyperspectral dark-field microscopy // Sci. Total Environ. 2023. V. 854. ID 158574. https://doi.org/10.1016/j.scitotenv.2022.158574
  30. Lichtman, J., Conchello, J.A. Fluorescence microscopy // Nat. Methods. 2005. V. 2. P. 910. https://doi.org/10.1038/nmeth817
  31. Liu Y., Li J., Parakhonskiy B.V., Hoogenboom R., Skirtach A., De Neve S. Labelling of micro- and nanoplastics for environmental studies: State-of-the-art and future challenges // J. Hazard. Mater. 2024. V. 462. ID 132785. https://doi.org/10.1016/j.jhazmat.2023.132785
  32. Ho D., Liu S., Wei H., Karthikeyan K.G. The glowing potential of Nile red for microplastics identification: Science and mechanism of fluorescence staining // Microchem. J. 2024. V. 197. ID 109708 https://doi.org/10.1016/j.microc.2023.109708
  33. Shim W.J., Song Y.K., Hong S.H., Jang M. Identification and quantification of microplastics using Nile Red staining // Mar. Pollut. Bull. 2016. V. 113. № 1–2. P. 469. https://doi.org/10.1016/j.marpolbul.2016.10.049
  34. Meyers N., Catarino A.I., Declercq A.M., Brenan A., Devriese L., Vandegehuchte M., De Witte B., Janssen C., Everaert G. Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique // Sci. Total Environ. 2022. V. 823. ID 153441. https://doi.org/10.1016/j.scitotenv.2022.153441
  35. Kо K., Chung H. Fluorescence microfluidic system for real-time monitoring of PS and PVC sub-micron microplastics under flowing conditions // Sci. Total Environ. 2024. V. 950. ID 175016. https://doi.org/10.1016/j.scitotenv.2024.175016
  36. Girão A.V., Caputo G., Ferro M.C. Chapter 6 – Application of scanning electron microscopy – Energy dispersive X-ray spectroscopy (SEM-EDS) / Comprehensive Analytical Chemistry / Eds. Rocha-Santos T.A.P., Duarte A.C. Elsevier, 2017. V. 75. P. 153. https://doi.org/10.1016/bs.coac.2016.10.002
  37. Mohamed E.F., El-Mekawy A., Abdel-Latifn N.M. Airborne microplastic contamination and health risks in Greater Cairo, Egypt // Environ. Sci. Pollut. Res. 2025. V. 32. P. 7705. https://doi.org/10.1007/s11356-025-36204-x
  38. Manbohi A., Mehdinia A., R., Dehbandi R. Microplastic pollution in inshore and offshore surface waters of the southern Caspian Sea // Chemosphere. 2021. V. 281. ID 130896. https://doi.org/10.1016/j.chemosphere.2021.130896
  39. Abbasi S., Alirezazadeh M., Razeghi N., Rezaei M., Pourmahmood H., Dehbandi R., Mehr M.R. Microplastics captured by snowfall: A study in Northern Iran // Sci. Total Environ. 2022. V. 822. ID 153451. https://doi.org/10.1016/j.scitotenv.2022.153451
  40. Laju R.L., Jayanthi M., Jeyasanta K.I., Patterson J., Asir N.G.G., Sathish M.N., Edward J.K.P. Spatial and vertical distribution of microplastics and their ecological risk in an Indian freshwater lake ecosystem // Sci. Total Environ. 2022. V. 820. ID 153337. https://doi.org/10.1016/j.scitotenv.2022.153337
  41. Gniadek М., Dąbrowska А. The marine nano- and microplastics characterisation by SEM-EDX: The potential of the method in comparison with various physical and chemical approaches // Mar. Pollut. Bull. 2019. V. 148. P. 210. https://doi.org/10.1016/j.marpolbul.2019.07.067
  42. Blair R.M., Waldron S., Phoenix V.R., Gauchotte-Lindsay C. Microscopy and elemental analysis characterisation of microplastics in sediment of a freshwater urban river in Scotland, UK // Environ. Sci. Pollut. Res. 2019. V. 26. P. 12491. https://doi.org/10.1007/s11356-019-04678-1
  43. Patterson J., Jeyasanta K.I., Sathish N., Edward J.K.P., Booth A.M. Microplastic and heavy metal distributions in an Indian coral reef ecosystem // Sci. Total Environ. 2020. V. 744. ID 140706. https://doi.org/10.1016/j.scitotenv.2020.140706
  44. Dehghani S., Moore F., Akhbarizadeh R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran // Environ. Sci. Pollut. Res. Int. 2017. V. 24. P. 20360. https://doi.org/10.1007/s11356-017-9674-1
  45. Wight S.A., Zeissler C.J. Environmental scanning electron microscope imaging examples related to particle analysis // Microsc. Res. Tech. V. 25. № 5-6. P. 393. https://doi.org/10.1002/jemt.1070250507
  46. Li H., Chang X., Zhang J., Wang Y., Zhong R., Wang L., Wei J., Wang Y. Uptake and distribution of microplastics of different particle sizes in maize (Zea mays) seedling roots // Chemosphere. 2023. V. 313. ID 137491. https://doi.org/10.1016/j.chemosphere.2022.137491
  47. Shi B., Patel M., Yu D., Yan J., Li Z., Petriw D., Pruyn T., Smyth K., Passeport E., Miller R.J.D., Howe J.Y. Automatic quantification and classification of microplastics in scanning electron micrographs via deep learning // Sci. Total Environ. 2022. V. 825. ID 153903. https://doi.org/10.1016/j.scitotenv.2022.153903
  48. Li L., Luo Y., Li R. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode // Nat. Sustain. 2020. V. 3. P. 929. https://doi.org/10.1038/s41893-020-0567-9
  49. Naji A., Nuri M., Amiri P., Niyogi S. Small microplastic particles (S-MPPs) in sediments of mangrove ecosystem on the northern coast of the Persian Gulf // Mar. Pollut. Bull. 2019. V. 146. P. 305. https://doi.org/10.1016/j.marpolbul.2019.06.033
  50. Bonfanti P. Microplastics from miscellaneous plastic wastes: Physico-chemical characterization and impact on fish and amphibian development // Ecotoxicol. Environ. Saf. 2021. V. 225. ID 112775. https://doi.org/10.1016/j.ecoenv.2021.112775
  51. Liu Y., Wang Y., Jiang N., Li S. Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior // Sci. Total Environ. 2022. V. 806. ID 150681. https://doi.org/10.1016/j.scitotenv.2021.150681
  52. Cortés C., Domenech J., Salazar M., Pastor S., Marcos R., Hernández A. Nanoplastics as a potential environmental health factor: effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells // Environ. Sci.: Nano. 2020. V. 7. P. 272. https://doi.org/10.1039/C9EN00523D
  53. Wang Z., Saadé N.K., Ariya P.A. Advances in ultra-trace analytical capability for micro/nanoplastics and water-soluble polymers in the environment: fresh falling urban snow // Environ. Pollut. V. 2021. V. 276. ID 116698. https://doi.org/10.1016/j.envpol.2021.116698
  54. Caldwell J., Taladriz-Blanco P., Roman Lehner R., Lubskyy A., Ortuso R.D., Rothen-Rutishauser B., Petri-Fink A. The micro-, submicron-, and nanoplastic hunt: A review of detection methods for plastic particles // Chemosphere. 2022. V. 293. ID 133514. https://doi.org/10.1016/j.chemosphere.2022.133514
  55. Fu W., Min J., Jiang W., Li Y., Zhang W. Separation, characterization and identification of microplastics and nanoplastics in the environment // Sci. Total Environ. 2020. V. 721. ID 137561. https://doi.org/10.1016/j.scitotenv.2020.137561
  56. Nguyen-Tri P., Ghassemi P., Carriere P., Nanda S., Assadi A.A. Nguyen D.D. Recent applications of advanced atomic force microscopy in polymer science: A review // Polymers. 2020. V. 12. ID 1142. https://doi.org/10.3390/polym12051142
  57. Li D., Shi Y., Yang L., Xiao L., Kehoe D.K., Gun’ko Y.K., Boland J.J., Wang J.J. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation // Nat. Food. 2020. V. 1. P. 746. https://doi.org/10.1038/s43016-020-00171-y
  58. Kumari A., Chaudhary D.R., Jha, B. Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain // Environ. Sci. Pollut. Res. 2019. V. 26. P. 1507. https://doi.org/10.1007/s11356-018-3465-1
  59. Akhatova F., Ishmukhametov I., Fakhrullina G., Fakhrullin R. Nanomechanical atomic force microscopy to probe cellular microplastics uptake and distribution // Int. J. Mol. Sci. 2022. V. 23. P. 806. https://doi.org/10.3390/ijms23020806
  60. Luo H., Xiang Y., Li Y., Zhao Y., Pan X. Photocatalytic aging process of nano-TiO2 coated polypropylene microplastics: Combining atomic force microscopy and infrared spectroscopy (AFM-IR) for nanoscale chemical characterization // J. Hazard. Mater. 2020. V. 404. ID 124159. https://doi.org/10.1016/j.jhazmat.2020.124159
  61. Selvam S., Jesuraja K., Venkatramanan S., Roy P.D., Kumari V.J. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India // J. Hazard. Mater. 2021. V. 402. ID 123786. https://doi.org/10.1016/j.jhazmat.2020.123786
  62. Merzel R.L., Purser L., Soucy T.L., Olszewski M., Colón-Bernal I., Duhaime M., Elgin A.K., Banaszak Holl M.M. Uptake and retention of nanoplastics in quagga mussels // Global Challenges. 2020. V. 4. ID 1800104. https://doi.org/10.1002/gch2.201800104
  63. ten Have I.C., Duijndam A.J., Oord A.R., van Berlo-van den Broek H.J.M., Vollmer I., Weckhuysen B.M., Meirer F. Photoinduced force microscopy as an efficient method towards the detection of nanoplastics // Chem. Methods. 2021. V. 1. P. 205. https://doi.org/10.1002/cmtd.202100017205
  64. Li Y., Wang Z., Guan B. Separation and identification of nanoplastics in tap water // Environ. Res. 2022. V. 204. ID 112134. https://doi.org/10.1016/j.envres.2021.112134
  65. Moud А.A. Polymer blends analyzed with confocal laser scanning microscopy // Polym. Bull. 2023. V. 80. P. 5929. https://doi.org/10.1007/s00289-022-04394-w
  66. Li W., Luo Y., Pan X. Identification and characterization methods for microplastics basing on spatial imaging in micro-/nanoscales / Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry / Eds. He D., Luo Y. Springer, 2020. V. 95. P. 25. https://doi.org/10.1007/698_2020_446
  67. Caldwell J., Loussert-Fonta C., Toullec G., Lyndby N.H., Haenni B., Taladriz-Blanco P., Espiña B., Rothen-Rutishauser B., Petri-Fink A. Correlative light, electron microscopy and raman spectroscopy workflow to detect and observe microplastic interactions with whole jellyfish // Environ. Sci. Technol. 2023. V. 57. № 16. P. 6664. https://doi.org/10.1021/acs.est.2c09233
  68. Zhang C., Yue N., Li X., Shao H., Wang J., An L., Jin F. Potential translocation process and effects of polystyrene microplastics on strawberry seedlings // J. Hazard. Mater. 2023. V. 449. ID 131019. https://doi.org/10.1016/j.jhazmat.2023.131019
  69. Li L., Luo Y., Peijnenburg W.J.G.M., Li R., Yang J., Zhou Q. Confocal measurement of microplastics uptake by plants // MethodsX. 2020. V. 7. ID 100750. https://doi.org/10.1016/j.mex.2019.11.023
  70. Caldwell J., Lehner R., Balog S., Rhême C., Gao X., Septiadi D., Weder C., Alke Petri-Fink A., Rothen-Rutishauser B. Fluorescent plastic nanoparticles to track their interaction and fate in physiological environments // Environ. Sci.: Nano. 2021. V. 8. P. 502. https://doi.org/10.1039/D0EN00944J
  71. Melo-Agustín P., Kozak E.R., de Jesús Perea-Flores M., Mendoza-Pérez J.A. Identification of microplastics and associated contaminants using ultra high resolution microscopic and spectroscopic techniques // Sci. Total Environ. 2022. V. 828. ID 154434. https://doi.org/10.1016/j.scitotenv.2022.154434
  72. Thaiba B.M., Sedai T., Bastakoti S., Karki A., Anuradha K.C., Khadka G., Acharya S., Kandel B., Giri B., Neupane B.B. A review on analytical performance of micro- and nanoplastics analysis methods // Arab. J. Chem. 2023. V. 16. P. 104686. https://doi.org/10.1016/j.arabjc.2023.104686
  73. Wang W., Wang J. Investigation of microplastics in aquatic environments : An overview of the methods used, from field sampling to laboratory analysis // Trends Anal. Chem. 2018. V. 108. P. 195. https://doi.org/10.1016/j.trac.2018.08.026
  74. Поздняков Ш.Р., Иванова Е.В., Гузева А.В., Шалунова Е.П., Мартинсон К.Д., Тихонова Д.А. Исследование содержания частиц микропластика в воде, донных отложениях и грунтах прибрежной территории Невской губы Финского залива // Водные ресурсы. 2020. Т. 47. № 4. P. 411. https://doi.org/10.31857/S0321059620040148 (Pozdnyakov Sh.R., Ivanova E.V., Guzeva A.V., Martinson K.D., Tikhonova D.A., Shalunova E.P. Studying the concentration of microplastic particles in water, bottom sediments and subsoils in the coastal area of the Neva Bay, the Gulf of Finland // Water Resour. 2020. V. 47. № 4. P. 599. https://doi.org/10.1134/S0097807820040132)
  75. Käppler A., Fischer D., Oberbeckmann S., Schernewski G., Labrenz M., Eichhorn K.-J., Voit B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? // Anal. Bioanal. Chem. 2016. V. 408. P. 8377. https://doi.org/10.1007/s00216-016-9956-3
  76. Shim W.J., Hong S.H., Eo S. Identification methods in microplastic analysis: A review // Anal. Methods. 2017. № 9. P. 1384. https://doi.org/10.1039/C6AY02558G
  77. Harrison J.P., Ojeda J.J., Romero-González M.E. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments // Sci. Total Environ. 2012. V. 416. P. 455. https://doi.org/10.1016/j.scitotenv.2011.11.078
  78. Vianello A., Boldrin A., Guerriero P., Moschino V., Rella R., Sturaro A., Da Ros L. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification // Estuar. Coast. Shelf Sci. 2013. V. 130. P. 54. https://doi.org/10.1016/j.ecss.2013.03.022
  79. Löder M.G.J., Kuczera M., Mintenig S., Lorenz C., Gerdts G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples // Environ. Chem. 2015. V. 12. № 5. P. 563. https://doi.org/10.1071/EN14205
  80. Primpke S., Lorenz C., Rascher-Friesenhausenbc R., Gerdtsa G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis // Anal. Methods. Royal Society of Chemistry. 2017. V. 9. P. 1499. https://doi.org/10.1039/C6AY02476A
  81. Tagg A.S., Sapp M., Harrison J.P., Ojeda J.J. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging // Anal. Chem. 2015. V. 87. № 12. P. 6032. https://doi.org/10.1021/acs.analchem.5b00495
  82. Cincinelli A., Scopetani C., Chelazzi D., Lombardini E., Martellini T., Katsoyiannis A., Fossi M.C., Corsolini S. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR // Chemosphere. 2017. V. 175. P. 391. https://doi.org/10.1016/j.chemosphere.2017.02.024
  83. Huppertsberg S., Knepper T.P. Instrumental analysis of microplastics – benefits and challenges // Anal. Bioanal. Chem. 2018. V. 410. № 25. P. 6343. https://doi.org/10.1007/s00216-018-1210-8
  84. Serranti S., Fiore L., Bonifazi G., Takeshima A., TakeuchiH., Kashiwada S. Microplastics characterization by hyperspectral imaging in the SWIR range // SPIE Future Sensing Technologies. 2019. Article 1119710. https://doi.org/10.1117/12.2542793
  85. Karlsson T.M., Grahn H., van Bavel B., Geladi P. Hyperspectral imaging and data analysis for detecting and determining plastic contamination in seawater filtrates // J. Near Infrared Spectrosc. 2016. V. 24. P. 141. https://doi.org/10.1255/jnirs.1212
  86. Nguyen N.B., Kim M.-K., Le Q.T., Ngo G.N., Zoh K.-D., Joo S.-W. Spectroscopic analysis of microplastic contaminants in an urban wastewater treatment plant from Seoul, South Korea // Chemosphere. 2021. V. 263. Article 127812. https://doi.org/10.1016/j.chemosphere.2020.127812
  87. Pakhomova S., Zhdanov I., van Bavel B. Polymer type identification of marine plastic litter using a miniature near-infrared spectrometer (MicroNIR) // Appl. Sci. 2020. V. 10. № 23. P. 1. https://doi.org/10.3390/app10238707
  88. Araujo C.F., Nolasco M.M., Ribeiro A.M.P., Ribeiro-Claro P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects // Water Res. 2018. V. 142. P. 426. https://doi.org/10.1016/j.watres.2018.05.060
  89. Ghosal S., Chen M., Wagner J., Wang Z.-M., Wall S. Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach – A Raman micro-spectroscopy study // Environ. Pollut. 2018. V. 233. P. 1113. https://doi.org/10.1016/j.envpol.2017.10.014 https://assets.thermofisher.com/TFS-Assets/MSD/Application-Notes/WP53077-microplastics-identification-ftir-raman-guide.pdf (21.05.2025).
  90. Lenz R., Enders K., Stedmon C.A., Mackenzie D.M.A., Nielsen T.G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement // Mar. Pollut. Bull. 2015. V. 100. P. 82. https://doi.org/10.1016/j.marpolbul.2015.09.026
  91. Sobhani Z., Zhang X., Gibson C., Naidu R., Megharaj M., Fang C. Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): down to 100 nm // Water Res. 2020. V. 174. Article 115658. https://doi.org/10.1016/j.watres.2020.115658
  92. Fang C., Song Y.K., Sobhani Z., Zhang X., McCourt L., Routley B., Gibson C., Naidu R. Identification and visualisation of microplastics / nanoplastics by Raman imaging (iii): Algorithm to cross-check multi-images // Water Res. 2021. V. 194. Article 116913. https://doi.org/10.1016/j.watres.2021.116913
  93. Song Y.K., Hong S.H., Eo S., Shim W.J. A comparison of spectroscopic analysis methods for microplastics: Manual, semi-automated, and automated Fourier transform infrared and Raman techniques // Mar. Pollut. Bull. 2021. V. 173. Article 113101. https://doi.org/10.1016/j.marpolbul.2021.113101
  94. Oßmann B.E., Sarau G., Schmitt S.W., Holtmannspötter H., Christiansen S.H., Dicke W. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy // Anal. Bioanal. Chem. 2017. V. 409. № 16. P. 4099. https://doi.org/10.1007/s00216-017-0358-y
  95. Schymanski D., Goldbeck C., Humpf H.U., Fürst P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water // Water Res. 2018. V. 129. P. 154. https://doi.org/10.1016/j.watres.2017.11.011
  96. Peez N., Janiska M., Imhof W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS) // Anal. Bioanal. Chem. 2019. V. 411. P. 823. https://doi.org/10.1007/s00216-018-1510-z
  97. Peez N., Imhof W. Quantitative 1H-NMR spectroscopy as an efficient method for identification and quantification of PVC, ABS and PA microparticles // Analyst. 2020. V. 145. № 15. P. 5363. https://doi.org/10.1039/D0AN00879F
  98. Corti A., Vinciguerra V., Iannilli V., Pietrelli L., Manariti A., Bianchi S., Petri A., Cifelli M., Domenici V., Castelvetro V. Thorough multianalytical characterization and quantification of micro- and nanoplastics from Bracciano Lake’s sediments // Sustainability. 2020. V. 12. 878. https://doi.org/10.3390/su12030878
  99. Peez N., Rinesch T., Kolz J., Imhof W. Applicable and cost-efficient microplastic analysis by quantitative 1 H-NMR spectroscopy using benchtop NMR and NoD methods // Magn. Reson. Chem. 2022. V. 60. P. 172. https://doi.org/10.1002/mrc.5210
  100. Mauel A., Pötzschner B., Meides N., Siegel R., Strohriegl P., Senker J. Quantification of photooxidative defects in weathered microplastics using 13C multiCP NMR spectroscopy // RSC Adv. 2022. V. 12. P. 10875. https://doi.org/10.1039/D2RA00470D
  101. Castillo A.B., El-Azhary M., Sorino C., LeVay L. Potential ecological risk assessment of microplastics in coastal sediments: Their metal accumulation and interaction with sedimentary metal concentration // Sci. Total Environ. 2024. V. 906. Article 167473. https://doi.org/10.1016/j.scitotenv.2023.167473
  102. Barceló D. Microplastics in the environment: analytical chemistry methods, sorption materials, risks and sustainable solutions // Anal. Bioanal. Chem. 2024. V. 416. P. 3479. https://doi.org/10.1007/s00216-024-05319-4
  103. Jian M., Niu J., Li W., Huang Y., Yu H., Lai Z., Liu S., Xu E.G. How do microplastics adsorb metals? A preliminary study under simulated wetland conditions // Chemosphere. 2022. V. 309. Article 136547. https://doi.org/10.1016/j.chemosphere.2022.136547
  104. Elseblani R., Cobo-Golpe M., Godin S., Jimenez-Lamana J., Fakhri M., Rodríguez I., Szpunar J. Study of metal and organic contaminants transported by microplastics in the Lebanese coastal environment using ICP MS, GC-MS, and LC-MS // Sci. Total Environ. 2023. V. 887. Article 164111. https://doi.org/10.1016/j.scitotenv.2023.164111
  105. Shi M., Xie Q., Li Z.L., Pan Y.F., Yuan Z., Lin L., Xu X.R., Li H.X. Adsorption of heavy metals on biodegradable and conventional microplastics in the Pearl River Estuary, China // Environ. Pollut. 2023. V. 322. Article 121158. https://doi.org/10.1016/j.envpol.2023.121158
  106. Squadrone S., Pederiva S., Bezzo T., Sartor R.M., Battuello M., Nurra N., Griglione A. Brizio P., Abete M.C. Microplastics as vectors of metals contamination in Mediterranean Sea // Environ. Sci. Pollut. Res. 2022. V. 29. P. 29529. https://doi.org/10.1007/s11356-021-13662-7
  107. Kuznetsova O.V., Shtykov S.N., Timerbaev A.R. Mass spectrometry insight for assessing the destiny of plastics in seawater // Polymers. 2023. V. 15. Article 1523. https://doi.org/10.3390/polym15061523
  108. Kuznetsova O.V. Sector-field–inductively coupled plasma–mass spectrometry (SF-ICP-MS) for the determination of toxic metals in microplastics from seawater and beach sediments from the Barents and White seas // Anal. Lett. 2025. P. 1. https://doi.org/10.1080/00032719.2024.2449150
  109. Kuznetsova O.V. Quantification of the toxic metals in microplastics from seawater and beach sediments by SF-ICP-MS: Comparison of different sample preparation methods // Int. J. Environ. Anal. Chem. 2025. P. 1. https://doi.org/10.1080/03067319.2025.2461165
  110. Kutralam-Muniasamy G., Pérez-Guevara F., Martínez I.E., Shruti V.C. Overview of microplastics pollution with heavy metals: Analytical methods, occurrence, transfer risks and call for standardization // J. Hazard. Mater. 2021. V. 415. Article 125755. https://doi.org/10.1016/j.jhazmat.2021.125755
  111. Pořízka P., Brunnbauer L., Porkert M., Rozman U., Marolt G., Holub D., Kizovský M., Benešová M., Samek O., Limbeck A., Kaiser J., Kalčíková G. Laser-based techniques: Novel tools for the identification and characterization of aged microplastics with developed biofilm // Chemosphere. 2023. V. 313. Article 137373. https://doi.org/10.1016/j.chemosphere.2022.137373
  112. El Hadri H., Gigault J., Mounicou S., Grassl B., Reynaud S. Trace element distribution in marine microplastics using laser ablation-ICP-MS // Mar. Pollut. Bull. 2020. V. 160. Article 111716. https://doi.org/10.1016/j.marpolbul.2020.111716
  113. Chew D., Drost K., Marsh J.H., Petrus J.A. LA-ICP-MS imaging in the geosciences and its applications to geochronology // Chem. Geol. 2021. V. 559. Article 119917. https://doi.org/10.1016/j.chemgeo.2020.119917
  114. Bolea-Fernandez E., Rua-Ibarz A., Velimirovic M., Tirez K., Vanhaecke F. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode // J. Anal. At. Spectrom. 2020. V. 35. P. 455. https://doi.org/10.1039/C9JA00379G
  115. Hendriks L., Mitrano D.M. direct measurement of microplastics by carbon detection via single particle ICP-TOFMS in complex aqueous suspensions // Environ. Sci. Technol. 2023. V. 57. № 18. P. 7263. https://doi.org/10.1021/acs.est.3c01192
  116. Laborda F., Trujillo C., Lobinski R. Analysis of microplastics in consumer products by single particle-inductively coupled plasma mass spectrometry using the carbon-13 isotope // Talanta. 2021. V. 221. Article 121486. https://doi.org/10.1016/j.talanta.2020.121486
  117. Miyashita S.I., Groombridge A.S., Fujii S.I., Minoda A., Takatsu A., Hioki A., Chiba K., Inagaki K. Highly efficient single-cell analysis of microbial cells by time-resolved inductively coupled plasma mass spectrometry // J. Anal. At. Spectrom. 2014. V. 29. P. 1598. https://doi.org/10.1039/C4JA00040D
  118. Trujillo C., Pérez-Arantegui J., Lobinski R., Laborda F. Improving the detectability of microplastics in river waters by single particle inductively coupled plasma mass spectrometry // Nanomaterials. 2023. V. 13. Article 1582. https://doi.org/10.3390/nano13101582
  119. Liu Z., Zhu Y., Lv S., Shi Y., Dong S., Yan D., Zhu X., Peng R., Keller A.A., Huang Y. Quantifying the dynamics of polystyrene microplastics UV-aging process // Environ. Sci. Technol. Lett. 2022. V. 9. P. 50. https://doi.org/10.1021/acs.estlett.1c00888
  120. Mansor M., Drabesch S., Bayer T., Van Le A., Chauhan A., Schmidtmann J., Peiffer S., Kappler A. Application of single-particle ICP-MS to determine the mass distribution and number concentrations of environmental nanoparticles and colloids // Environ. Sci. Technol. Lett. 2021. V. 8. P. 589. https://doi.org/10.1021/acs.estlett.1c00314
  121. Gonzalez de Vega R., Goyen S., Lockwood T.E., Doble P.A., Camp E.F., Clases D. Characterisation of microplastics and unicellular algae in seawater by targeting carbon via single particle and single cell ICP-MS // Anal Chim Acta 2021. V. 1174. Article 338737. https://doi.org/10.1016/j.aca.2021.338737
  122. Nava V., Chandra S., Aherne J., Alfonso M.B., Antão-Geraldes A.M., Attermeyer K., Bao R., Bartrons M., Berger S.A., Biernaczyk M., Bissen R., Brookes J.D., Brown D., Cañedo-Argüelles M., Canle M., Capelli C., Carballeira R., Cereijo J.L., Chawchai S., Christensen S.T., Christoffersen K.S., de Eyto E., Delgado J., Dornan T.N., Doubek J.P., Dusaucy J., Erina O., Ersoy Z., Feuchtmayr H., Frezzotti M.L., Galafassi S., Gateuille D., Gonçalves V., Grossart H.P., Hamilton D.P., Harris T.D., Kangur K., Kankılıç G.B., Kessler R., Kiel C., Krynak E.M., Leiva-Presa À., Lepori F., Matias M.G., Matsuzaki S.S., McElarney Y., Messyasz B., Mitchell M., Mlambo M.C., Motitsoe S.N., Nandini S., Orlandi V., Owens C., Özkundakci D., Pinnow S., Pociecha A., Raposeiro P.M., Rõõm E.I., Rotta F., Salmaso N., Sarma S.S.S., Sartirana D., Scordo F., Sibomana C., Siewert D., Stepanowska K., Tavşanoğlu Ü.N., Tereshina M., Thompson J., Tolotti M., Valois A., Verburg P., Welsh B., Wesolek B., Weyhenmeyer G.A., Wu N., Zawisza E., Zink L., Leoni B. Plastic debris in lakes and reservoirs // Nature. 2023. V. 619. P. 317. https://doi.org/10.1038/s41586-023-06168-4
  123. Tian X., Jiang H., Hu L., Wang M., Cui W., Shi J., Liu G., Yin Y., Cai Y., Jiang G. Simultaneous multi-element and multi-isotope detection in single-particle ICP-MS analysis: Principles and applications // Trends Anal. Chem. 2022. V. 157. Article 116746. https://doi.org/10.1016/j.trac.2022.116746
  124. Gundlach-Graham A. Multiplexed and multi-metal single-particle characterization with ICP-TOFMS // Compr. Anal. Chem. 2021. V. 93. P. 69. https://doi.org/10.1016/bs.coac.2021.01.008
  125. Ермолин М.С., Федотов П.С. Выделение наночастиц из почвы и пыли и их исследование методом масс-спектрометрии с индуктивно связанной плазмой в режиме анализа единичных частиц // Журн. аналит. химии. 2023. Т. 78. № 9. С. 771. https://doi.org/10.31857/S0044450223090049 (Ermolin M.S., Fedotov P.S. Isolation of nanoparticles from soil and dust and their study by single particle inductively coupled plasma mass spectrometry // J. Anal. Chem. 2023. V. 78. P. 1115. https://doi.org/10.1134/S1061934823090046)
  126. Harycki S., Gundlach-Graham A. Characterization of a high-sensitivity ICP-TOFMS instrument for microdroplet, nanoparticle, and microplastic analyses // J. Anal. At. Spectrom. 2022. V. 38. P. 111. https://doi.org/10.1039/D2JA00295G
  127. Michener R., Lajtha K. Stable Isotopes in Ecology and Environmental Science. Second Ed. Blackwell Publishing Ltd., 2008. P. 566.
  128. Muccio Z., Jackson G.P. Isotope ratio mass spectrometry // Analyst. 2009. V. 134. P. 213. https://doi.org/10.1039/B808232D
  129. Chikaraishi Y., Suzuki Y., Naraoka H. Hydrogen isotopic fractionations during desaturation and elongation associated with polyunsaturated fatty acid biosynthesis in marine macroalgae // Phytochemistry. 2004. V. 65. P. 2293. https://doi.org/10.1016/j.phytochem.2004.06.030
  130. Kelly S., Heaton K., Hoogewerff J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis // Trends Food Sci. Technol. 2005. V. 16. P. 555. https://doi.org/10.1016/j.tifs.2005.08.008
  131. Smith B.N., Epstein S. Two categories of 13C/12C ratios for higher plants // Plant Physiol. 1971. V. 47. P. 380. https://doi.org/10.1104/pp.47.3.380
  132. Yeh H.W., Epstein S. Hydrogen and carbon isotopes of petroleum and related organic matter // Geochim. Cosmochim. Acta. 1981. V. 45. P. 753. https://doi.org/10.1016/0016-7037(81)90046-6
  133. Suzuki Y., Akamatsu F., Nakashita R., Korenaga T. A novel method to discriminate between plant- and petroleum-derived plastics by stable carbon isotope analysis // Chem. Lett. 2010. V. 39. P. 998. https://doi.org/10.1246/cl.2010.998
  134. Berto D., Rampazzo F., Gion C., Noventa S., Ronchi F., Traldi U., Giorgi G., Cicero A.M., Giovanardi O. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS) // Chemosphere. 2017. V. 176. P. 47. https://doi.org/10.1016/j.chemosphere.2017.02.090
  135. Birch Q.T., Potter P.M., Pinto P.X., Dionysiou D.D., Al-Abed S.R. Isotope ratio mass spectrometry and spectroscopic techniques for microplastics characterization // Talanta. 2021. V. 224. Article 121743. https://doi.org/10.1016/j.talanta.2020.121743
  136. Zhang Y., Zhang T., Li H. Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring // Spectrochim. Acta B: At. Spectrosc. 2021. V. 181. Article 106218. https://doi.org/10.1016/j.sab.2021.106218
  137. Chen D., Wang T., Ma Y., Wang G., Kong Q., Zhang P., Li R. Rapid characterization of heavy metals in single microplastics by laser induced breakdown spectroscopy // Sci. Total Environ. 2020. V. 743. Article 140850. https://doi.org/10.1016/j.scitotenv.2020.140850
  138. Chen X., Ali S., Yuan L., Guo F., Huang G., Shi W., Chen X. Characterization and source analysis of heavy metals contamination in microplastics by laser-induced breakdown spectroscopy // Chemosphere. 2022. V. 287. Article 132172. https://doi.org/10.1016/j.chemosphere.2021.132172
  139. Tognana S., D’Angelo C., Montecinos S., Pereyra M., Salgueiro W. Laser induced breakdown spectroscopy (LIBS) as a technique to detect copper in plastic and microplastic waste // Chemosphere. 2022. V. 303. Article 135168. https://doi.org/10.1016/j.chemosphere.2022.135168
  140. Sommer C., Schneider L.M., Nguyen J., Prume J.A., Lautze K., Koch M. Identifying microplastic litter with laser induced breakdown spectroscopy: A first approach // Mar. Pollut. Bull. 2021. V. 171. Article 112789. https://doi.org/10.1016/j.marpolbul.2021.112789
  141. Chamradová I., Pořízka P., Kaiser J. Laser-induced breakdown spectroscopy analysis of polymers in three different atmospheres // Polym. Test. 2021. V. 96. Article 107079. https://doi.org/10.1016/j.polymertesting.2021.107079
  142. Хабибуллин В.Р., Шевченко Н.Н., Проскурнин М.А. Определение наночастиц полистирола в водных растворах методом двулучевой термолинзовой спектрометрии // Журн. аналит. химии. 2024. Т. 79. № 12. С. 1335. https://doi.org/10.31857/S0044450224120069 (Khabibullin V.R., Shevchenko N.N., Proskurnin M.A. Determination of polystyrene nanoparticles in aqueous solutions by dual-beam thermal lens spectrometry // J. Anal. Chem. 2024. V. 79. P. 1779. https://doi.org/10.1134/S1061934824701351
  143. Martins I., Rodríguez Y., Pham C.K. Trace elements in microplastics stranded on beaches of remote islands in the NE Atlantic // Mar. Pollut. Bull. 2020. V. 156. Article 111270. https://doi.org/10.1016/j.marpolbul.2020.111270
  144. Li W., Lo H.S., Wong H.M., Zhou M., Wong C.Y., Tam N.F.Y., Cheung S.G. Heavy metals contamination of sedimentary microplastics in Hong Kong // Mar. Pollut. Bull. 2020. V. 153. Article 110977. https://doi.org/10.1016/j.marpolbul.2020.110977
  145. Maršić-Lučić J., Lušić J., Tutman P., Bojanić Varezić D., Šiljić J., Pribudić J. Levels of trace metals on microplastic particles in beach sediments of the island of Vis, Adriatic Sea, Croatia // Mar. Pollut. Bull. 2018. V. 137. P. 231. https://doi.org/10.1016/j.marpolbul.2018.10.027
  146. Munier B., Bendell L.I. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems // PLoS One. 2018. V. 13. Article e0191759. https://doi.org/10.1371/journal.pone.0191759
  147. Wilschefski S.C., Baxter M.R. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects // Clin. Biochem. Rev. 2019. V. 40. P. 115. https://doi.org/10.33176/AACB-19-00024
  148. Li Y., Wang Z., Guan B. Separation and identification of nanoplastics in tap water // Environ. Res. 2022. V. 204. Article 112134. https://doi.org/10.1016/j.envres.2021.112134
  149. Mariano S., Tacconi S., Fidaleo M., Rossi M., Dini L. Micro and nanoplastics identification: Classic methods and innovative detection techniques // Front. Toxicol. 2021. V. 3. Article 636640. https://doi.org/10.3389/ftox.2021.636640
  150. Jiménez-Skrzypek G., Lusiardi R., González-Sálamo J., Vega-Moreno D., Hernández-Borges J. Insights into emerging organic pollutants extraction from polypropylene, polystyrene, and polyethylene microplastics // Anal. Chim. Acta. 2024. V. 1287. Article 342071. https://doi.org/10.1016/j.aca.2023.342071
  151. Okoffo E.D., Ribeiro F., O'Brien J.W., O'Brien S., Tscharke B.J., Gallen M., Samanipour S., Mueller J.F., Thomas K.V. Identification and quantification of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography–mass spectrometry // Sci. Total Environ. 2020. V. 715. Article 136924. https://doi.org/10.1016/j.scitotenv.2020.136924
  152. La Nasa J., Biale G., Fabbri D., Moduglo F. A review on challenges and developments of analytical pyrolysis and other thermoanalytical techniques for the quali-quantitative determination of microplastics // J. Anal. Appl. Pyrolysis. 2020. Vol. 149. Article 104841. https://doi.org/10.1016/j.jaap.2020.104841
  153. La Nasa J., Biale G., Mattonai M., Modugno F. Microwave-assisted solvent extraction and double-shot analytical pyrolysis for the quali-quantitation of plasticizers and microplastics in beach sand samples // J. Hazard. Mater. 2021. V. 401. Article 123287. https://doi.org/10.1016/j.jhazmat.2020.123287
  154. Matsui K., Ishimura T., Mattonai M., Iwai I., Watanabe A., Teramae N., Ohtani H., Watanabe C. Identification algorithm for polymer mixtures based on Py-GC/MS and its application for microplastic analysis in environmental samples // J. Anal. Appl. Pyrolysis. 2020. V. 149. Article 104834. https://doi.org/10.1016/j.jaap.2020.104834
  155. Vilakati B., Sivasankar V., Mamba B.B., Omine K., Msagati T.A.M. Characterization of plastic micro particles in the Atlantic Ocean seashore of Cape Town, South Africa and mass spectrometry analysis of pyrolyzate products // Environ. Pollut. 2020. V. 265. Article 114859. https://doi.org/10.1016/j.envpol.2020.114859
  156. Nuelle M.T., Dekiff J.H., Remy D., Fries E. A new analytical approach for monitoring microplastics in marine sediments // Environ. Pollut. 2014. V. 184. P. 161. https://doi.org/10.1016/j.envpol.2013.07.027
  157. Mizukawa K., Takada H., Ito M., Geok Y.B., Hosoda J., Yamashita R., Saha M., Suzuki S., Miguez C., Frias J., Antunes J.C., Sobral P., Santos I., Micaelo C., Ferreira A.M. Monitoring of a wide range of organic micropollutants on the Portuguese coast using plastic resin pellets // Mar. Pollut. Bull. 2013. V. 70. № 1–2. P. 296. https://doi.org/10.1016/j.marpolbul.2013.02.008
  158. Tianniam S., Bamba T., Fukusaki E. Pyrolysis GC-MS-based metabolite fingerprinting for quality evaluation of commercial Angelica acutiloba roots // J. Biosci. Bioeng. 2010. V. 109. № 1. P. 89. https://doi.org/10.1016/j.jbiosc.2009.06.025
  159. Fabbri D., Tartari D., Trombini C. Analysis of poly(vinyl chloride) and other polymers in sediments and suspended matter of a coastal lagoon by pyrolysis-gas chromatography-mass spectrometry // Anal. Chim. Acta. 2000. V. 413. P. 3. https://doi.org/10.1016/S0003-2670(00)00766-2
  160. Dümichen E., Eisentraut P., Bannick C.G., Barthel A.K., Senz R., Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method // Chemosphere. 2017. V. 174. P. 572. https://doi.org/10.1016/j.chemosphere.2017.02.010
  161. Dümichen E., Braun U., Senz R., Fabian G., Sturm H. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal // J. Chromatogr. A. 2014. V. 1354. P. 117. https://doi.org/10.1016/j.chroma.2014.05.057
  162. Elert A.M., Becker R., Duemichen E., Eisentraut P., Falkenhagen J., Sturm H., Braunet U. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? // Environ. Pollut. 2017. V. 231. P. 1256. https://doi.org/10.1016/j.envpol.2017.08.074
  163. Picó Y., Barceló D. Pyrolysis gas chromatography-mass spectrometry in environmental analysis: Focus on organic matter and microplastics // Trends Anal. Chem. 2020. V. 130. Article 115964. https://doi.org/10.1016/j.trac.2020.115964
  164. Tan X., Yu X., Cai L., Wang J., Peng J. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China // Chemosphere. 2019. V. 221. P. 834. https://doi.org/10.1016/j.chemosphere.2019.01.022
  165. Sullivan G.L., Gallardo J.D., Jones E.W., Hollliman P.J., Watson T.M., Sarp S. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF). // Chemosphere. 2020. V. 249. Article 126179. https://doi.org/10.1016/j.chemosphere.2020.126179
  166. Sotnikova Y.S., Karpova E.V., Song D.I., Polovyanenko D.N., Kuznetsova T.A., Rodionova S.G., Bagryanskaya E.G. The development of an analytical procedure for the determination of microplastics in freshwater ecosystems // Anal. Methods. 2024. V. 16. P. 8019. https://doi.org/10.1039/D4AY01279H
  167. Scherer C., Weber A., Stock F., Vurusic S., Egerci H., Kochleus C., Arendt N., Foeldi C., Dierkes G., Wagner M., Brennholt N., Reifferscheid G. Comparative assessment of microplastics in water and sediment of a large European river // Sci. Total Environ. 2020. V. 738. Article 139866. https://doi.org/10.1016/j.scitotenv.2020.139866
  168. Ермолин М.С., Иванеев А.И., Савонина Е.Ю., Дженлода Р.Х. Выделение микропластика из речной воды во вращающейся спиральной колонке с использованием системы вода-масло // Журн. аналит. химии. 2025. Т. 80. № 3. С. 254. https://doi.org/10.31857/S0044450225030024 (Ermolin M.S., Ivaneev A.I., Savonina E.Yu., Dzhenloda R.Kh. Extraction of microplastics from river water in a rotating coiled column using a water–oil system // J. Anal. Chem. 2025. V. 80. No. 3. Р. 430.)
  169. Funck M., Yildirim A., Nickel C., Schram J., Schmidt T.C., Tuerk J. Identification of microplastics in wastewater after cascade filtration using Pyrolysis-GC–MS // MethodsX. 2020. V. 7. Article 100778. https://doi.org/10.1016/j.mex.2019.100778
  170. Minor E.C., Lin R., Burrows A., Cooney E.M., Grosshuesch S., Lafrancois B. Minor E.C. An analysis of microlitter and microplastics from Lake Superior beach sand and surface-water // Sci. Total Environ. 2020. V. 744. Article 140824. https://doi.org/10.1016/j.scitotenv.2020.140824
  171. Hermabessiere L., Himber C., Boricaud B., Kazour M., Amara R., Cassone A.L., Laurentie M., Paul-Pont I., Soudant P., Dehaut A., Duflos G. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics // Anal. Bioanal. Chem. 2018. V. 410. № 25. P. 6663. https://doi.org/10.1007/s00216-018-1279-0
  172. Mintenig S.M., Bäuerlein P.S., Koelmans A.A., Dekker S.C., van Wezel A.P. Closing the gap between small and smaller: Towards a framework to analyse nano- and microplastics in aqueous environmental samples // Environ. Sci.: Nano. 2018. V. 5. № 7. P. 1640. https://doi.org/10.1039/C8EN00186C
  173. Akoueson F., Chbib C., Monchy S., Paul-Pont I., Doyen P., Dehaut A., Duflos G. Identification and quantification of plastic additives using pyrolysis-GC/MS: A review // Sci. Total Environ. 2021. V. 773. Article 145073. https://doi.org/10.1016/j.scitotenv.2021.145073
  174. Reichel J., Graßmann J., Letzel T., Drewes J.E. Systematic Development of a simultaneous determination of plastic particle identity and adsorbed organic compounds by thermodesorption–pyrolysis GC/MS (TD-Pyr-GC/MS) // Molecules. 2020. V. 25. № 21. 4985. https://doi.org/10.3390/molecules25214985
  175. Dümichen E., Barthel A.K., Braun U., Bannick C.G., Brand K., Jekel M., Senz R. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method // Water Res. 2015. V. 85. P. 451. https://doi.org/10.1016/j.watres.2015.09.002
  176. Duemichen E., Eisentraut P., Celina M., Braun U. Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products // J. Chromatogr. A. 2019. V. 1592. P. 133. https://doi.org/10.1016/j.chroma.2019.01.033
  177. Chen C.F., Ju Y.R., Lim Y.C., Hsu N.H., Lu K.T., Hsieh S.L., Dong C.D., Chen C.W. Microplastics and their affiliated PAHs in the sea surface connected to the southwest coast of Taiwan // Chemosphere. 2020. V. 254. Article 126818. https://doi.org/10.1016/j.chemosphere.2020.126818
  178. Yeo B.G., Takada H., Yamashita R., Okazaki Y., Uchida K., Tokai T., Tanaka K., Trenholm N. PCBs and PBDEs in microplastic particles and zooplankton in open water in the Pacific Ocean and around the coast of Japan // Mar. Pollut. Bull. 2020. V. 151. Article 110806. https://doi.org/10.1016/j.marpolbul.2019.110806
  179. Antunes J.C., Frias J.G.L., Micaelo A.C., Sobral P. Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants // Estuar. Coast. Shelf Sci. 2013. V. 130. P. 62. https://doi.org/10.1016/j.ecss.2013.06.016
  180. Van A., Rochman C.M., Flores E.M., Hill K.L., Vargas E., Vargas S.A., Hoh E. Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California // Chemosphere. 2012. V. 86. № 3. P. 258. https://doi.org/10.1016/j.chemosphere.2011.09.039
  181. Seidensticker S., Grathwohl P., Lamprecht J., Zarfl C. A combined experimental and modeling study to evaluate pH-dependent sorption of polar and non-polar compounds to polyethylene and polystyrene microplastics // Environ. Sci. Eur. 2018. V. 30. P. 30. https://doi.org/10.1186/s12302-018-0155-z
  182. Qiu Y., Zheng M., Wang L., Zhao Q., Lou Y., Shi L., Qu L. Sorption of polyhalogenated carbazoles (PHCs) to microplastics // Mar. Pollut. Bull. 2019. V. 146. P. 718. https://doi.org/10.1016/j.marpolbul.2019.07.034
  183. Xu P., Ge W., Chai C., Zhang Y., Jiang T., Xia B. Sorption of polybrominated diphenyl ethers by microplastics // Mar. Pollut. Bull. 2019. V. 145. P. 260. https://doi.org/10.1016/j.marpolbul.2019.05.050
  184. Müller A., Becker R., Dorgerloh U., Simon F.G., Braun U. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics // Environ. Pollut. 2018. V. 240. P. 639. https://doi.org/10.1016/j.envpol.2018.04.127
  185. Jiménez-Skrzypek G., Ortega-Zamora C., González-Sálamo J., Hernández-Sánchez C., Hernández-Borges J. The current role of chromatography in microplastic research: Plastics chemical characterization and sorption of contaminants // J. Chromatogr. Open. 2021. V. 1. Article 100001. https://doi.org/10.1016/j.jcoa.2021.100001
  186. Müller A., Goedecke C., Eisentraut P., Piechotta C., Braun U. Microplastic analysis using chemical extraction followed by LC-UV analysis: A straightforward approach to determine PET content in environmental samples // Environ. Sci. Eur. 2020. V. 32. № 1. P. 1. https://doi.org/10.1186/s12302-020-00358-x
  187. Castelvetro V., Corti A., Ceccarini A., Petri A., Vinciguerra V. Nylon 6 and nylon 6,6 micro- and nanoplastics: A first example of their accurate quantification, along with polyester (PET), in wastewater treatment plant sludges // J. Hazard. Mater. 2021. V. 407. Article 124364. https://doi.org/10.1016/j.jhazmat.2020.124364
  188. Liu C., Li J., Zhang Y., Wang L., Deng J., Gao Y., Yu L., Zhang J., Sun H. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure // Environ. Int. 2019. V. 128. P. 116. https://doi.org/10.1016/j.envint.2019.04.024
  189. Zhang J., Wang L., Halden R.U., Kannan K. Polyethylene terephthalate and polycarbonate microplastics in sewage sludge collected from the United States // Environ. Sci. Technol. Lett. 2019. V. 6. № 11. P. 650. https://doi.org/10.1021/acs.estlett.9b00601
  190. Llorca M., Vega-Herrera A., Schirinzi G., Savva K., Abad E., Farré M. Screening of suspected micro(nano)plastics in the Ebro Delta (Mediterranean Sea) // J. Hazard. Mater. 2021. V. 404. Article 124022. https://doi.org/10.1016/j.jhazmat.2020.124022
  191. Schirinzi G.F., Llorca M., Seró R., Moyano E., Barceló D., Abad E., Farré M. Trace analysis of polystyrene microplastics in natural waters // Chemosphere. 2019. V. 236. Article 124321. https://doi.org/10.1016/j.chemosphere.2019.07.052
  192. Müller Y.K., Wernicke T., Pittroff M., Witzig C.S., Storck F.R., Klinger J., Zumbülte N. Microplastic analysis—are we measuring the same? Results on the first global comparative study for microplastic analysis in a water sample // Anal. Bioanal. Chem. 2020. V. 412. № 3. P. 555. https://doi.org/10.1007/s00216-019-02311-1
  193. Castelvetro V., Corti A., Bianchi S., Ceccarini A., Manariti A., Vinciguerra V. Quantification of poly(ethylene terephthalate) micro- and nanoparticle contaminants in marine sediments and other environmental matrices // J. Hazard. Mater. 2020. V. 385. Article 121517. https://doi.org/10.1016/j.jhazmat.2019.121517
  194. Wang L., Zhang J., Hou S., Sun H. A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography-tandem mass spectrometry // Environ. Sci. Technol. Lett. 2017. V. 4. № 12. P. 530. https://doi.org/10.1021/acs.estlett.7b00454
  195. Wang L., Peng Y., Xu Y., Zhang J., Zhang T., Yan M., Sun H. An in situ depolymerization and liquid chromatography–tandem mass spectrometry method for quantifying polylactic acid microplastics in environmental samples // Environ. Sci. Technol. 2022. V. 56. № 18. P. 13029. https://doi.org/10.1021/acs.est.2c02221
  196. Zhao L., Rong L., Xu J., Lian J., Wang L., Sun H. Sorption of five organic compounds by polar and nonpolar microplastics // Chemosphere. 2020. V. 257. Article 127206. https://doi.org/10.1016/j.chemosphere.2020.127206
  197. Zhang P., Huang P., Sun H., Ma J., Li B. The structure of agricultural microplastics (PT, PU and UF) and their sorption capacities for PAHs and PHE derivates under various salinity and oxidation treatments // Environ. Pollut. 2020. V. 257. Article 113525. https://doi.org/10.1016/j.envpol.2019.113525
  198. Bayo J., Martínez A., Guillén M., Olmos S., Roca M.J., Alcolea A. Microbeads in commercial facial cleansers: Threatening the environment // Clean – Soil, Air, Water. 2017. V. 45. № 7. Article 1600683. https://doi.org/10.1002/clen.201600683
  199. Guo X., Wang J. Sorption of antibiotics onto aged microplastics in freshwater and seawater // Mar. Pollut. Bull. 2019. V. 149. 110511. https://doi.org/10.1016/j.marpolbul.2019.110511
  200. Wu P., Cai Z., Jin H., Tang Y. Adsorption mechanisms of five bisphenol analogues on PVC microplastics // Sci. Total Environ. 2019. V. 650. P. 671. https://doi.org/10.1016/j.scitotenv.2018.09.049
  201. Wu C., Zhang K., Huang X., Liu J. Sorption of pharmaceuticals and personal care products to polyethylene debris // Environ. Sci. Pollut. Res. 2016. V. 23. № 9. P. 8819. https://doi.org/10.1007/s11356-016-6121-7
  202. Razanajatovo R.M., Ding J., Zhang S., Jiang H., Zou H. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics // Mar. Pollut. Bull. 2018. V. 136. P. 516. https://doi.org/10.1016/j.marpolbul.2018.09.048
  203. Wang Y., Wang X., Li Y., Li J., Wang F., Xia S., Zhao J. Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics // Chem. Eng. J. 2020. V. 392. Article 123808. https://doi.org/10.1016/j.cej.2019.123808
  204. Nguyen T.B., Ho T.B., Huang C.P., Chen C.W., Hsieh S.L., Tsai W.P., Dong C.D. Adsorption characteristics of tetracycline onto particulate polyethylene in dilute aqueous solutions // Environ. Pollut. 2021. V. 285. Article 117398. https://doi.org/10.1016/j.envpol.2021.117398
  205. Wang T., Yu C., Chu Q., Wang F., Lan T., Wang J. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films // Chemosphere. 2020. V. 244. Article 125491. https://doi.org/10.1016/j.chemosphere.2019.125491
  206. Subair A., Krishnamoorthy Lakshmi P., Chellappan S., Chinghakham C. Removal of polystyrene microplastics using biochar-based continuous flow fixed-bed column // Environ. Sci. Pollut. Res. 2024. V. 31. № 9. P. 13753. https://doi.org/10.1007/s11356-024-32088-5
  207. Hintersteiner I., Himmelsbach M., Buchberger W.W. Characterization and quantitation of polyolefin microplastics in personal-care products using high-temperature gel-permeation chromatography // Anal. Bioanal. 2015. V. 407. № 4. P. 1253. https://doi.org/10.1007/s00216-014-8318-2
  208. Liu X., Sun P., Qu G., Jing J., Zhang T., Shi H., Zhao Y. Insight into the characteristics and sorption behaviors of aged polystyrene microplastics through three type of accelerated oxidation processes // J. Hazard. Mater. 2021. V. 407. Article 124836. https://doi.org/10.1016/j.jhazmat.2020.124836
  209. Song Y., Qiu R., Hu J., Li X., Zhang X., Chen Y., Wu W.M., He D. Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica // Sci. Total Environ. 2020. V. 746. Article 141289. https://doi.org/10.1016/j.scitotenv.2020.141289
  210. Biver T., Bianchi S., Carosi M.R., Ceccarini A., Corti A., Manco E., Castelvetro V., Biver T. Selective determination of poly(styrene) and polyolefin microplastics in sandy beach sediments by gel permeation chromatography coupled with fluorescence detection // Mar. Pollut. Bull. 2018. V. 136. P. 269. https://doi.org/10.1016/j.marpolbul.2018.09.024
  211. Liu H., Liu K., Fu H., Ji R., Qu X. Sunlight mediated cadmium release from colored microplastics containing cadmium pigment in aqueous phase // Environ. Pollut. 2020. V. 263. Article 114484. https://doi.org/10.1016/j.envpol.2020.114484
  212. Chen Z., Zhao W., Xing R., Xie S., Yang X., Cui P., Lü J., Liao H., Yu Z., Wang S., Zhou S. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology // J. Hazard. Mater. 2020. V. 384. Article 121271. https://doi.org/10.1016/j.jhazmat.2019.121271
  213. Wu Q., Tao H., Wong M.H. Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. // Environ. Geochem. Health. 2019. V. 41. № 1. P. 17. https://doi.org/10.1007/s10653-018-0161-5
  214. Ceccarini A., Corti A., Erba F., Modugno F., La Nasa J., Bianchi S., Castelvetro V. The hidden microplastics: New insights and figures from the thorough separation and characterization of microplastics and of their degradation byproducts in coastal sediments // Environ. Sci. Technol. 2018. V. 52. № 10. P. 5634. https://doi.org/10.1021/acs.est.8b01487
  215. David J., Weissmannová H.D., Steinmetz Z., Kabelíková L., Demyan M.S., Šimečková J., Tokarski D., Siewert C., Schaumann G.E., Kučerík J. Introducing a soil universal model method (SUMM) and its application for qualitative and quantitative determination of poly(ethylene), poly(styrene), poly(vinyl chloride) and poly(ethylene terephthalate) microplastics in a model soil // Chemosphere. 2019. V. 225. P. 810. https://doi.org/10.1016/j.chemosphere.2019.03.078
  216. Mansa R., Zou S. Thermogravimetric analysis of microplastics: A mini review // Environ. Adv. 2021. V. 5. Article 100117. https://doi.org/10.1016/j.envadv.2021.100117
  217. Peñalver R., Arroyo-Manzanares N., López-García I., Hernández-Córdoba M. An overview of microplastics characterization by thermal analysis // Chemosphere. 2020. V. 242. Article 125170. https://doi.org/10.1016/j.chemosphere.2019.125170
  218. Costa-Gómez I., Suarez-Suarez M., Moreno J.M., Moreno-Grau S., Negral L., Arroyo-Manzanares N., López-García I., Peñalver R. A novel application of thermogravimetry-mass spectrometry for polystyrene quantification in the PM10 and PM2.5 fractions of airborne microplastics // Sci. Total Environ. 2023. V. 856. Article 159041. https://doi.org/10.1016/j.scitotenv.2022.159041
  219. Peñalver R., Costa-Gómez I., Arroyo-Manzanares N., Moreno J.M., López-García I., Moreno-Grau S., Córdoba M.H. Assessing the level of airborne polystyrene microplastics using thermogravimetry-mass spectrometry: Results for an agricultural area // Sci. Total Environ. 2021. V. 787. Article 147656. https://doi.org/10.1016/j.scitotenv.2021.147656
  220. de la Fuente A.M., Marhuenda-Egea F.C., Ros M., Pascual J.A., Saez-Tovar J.A., Martinez-Sabater E., Peñalver R. Thermogravimetry coupled with mass spectrometry successfully used to quantify polyethylene and polystyrene microplastics in organic amendments // Environ. Res. 2022. V. 213. Article 113583. https://doi.org/10.1016/j.envres.2022.113583
  221. Chialanza R., Sierra M., Pérez Parada I., Fornaro L.A. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry // Environ. Sci. Pollut. Res. 2018. V. 25. P. 16767. https://doi.org/10.1007/s11356-018-1846-0
  222. Shabaka S.H., Ghobashy M., Marey R.S. Identification of marine microplastics in Eastern Harbor, Mediterranean Coast of Egypt, using differential scanning calorimetry // Mar. Pollut. Bull. 2019. V. 142. P. 494. https://doi.org/10.1016/j.marpolbul.2019.03.062
  223. Majewsky M., Bitter H., Eiche E., Horn H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC) // Sci. Total Environ. 2016. V. 568. P. 507. https://doi.org/10.1016/j.scitotenv.2016.06.017
  224. Sorolla-Rosario D., Llorca-Porcel J., Pérez-Martínez M., Lozano-Castelló D., Bueno-López F. Study of microplastics with semicrystalline and amorphous structure identification by TGA and DSC // J. Environ. Chem. Eng. 2022. V. 10. № 1. Article 106886. https://doi.org/10.1016/j.jece.2021.106886

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».