Caustic-like Structures in UHECR Flux after Propagation in Turbulent Intergalactic Magnetic Fields

Cover Page

Cite item

Full Text

Abstract

UHECR propagation in a turbulent intergalactic magnetic field in the small-angle scattering regime is well understood for propagation distances much larger than the field coherence scale. The diffusion theory doesn’t work and unexpected effects may appear for propagation over smaller distances, from a few and up to 10–20 coherence scales. We study the propagation of UHECRs in this regime, which may be relevant for intermediate mass UHECR nuclei and nG scale intergalactic magnetic fields with 1 Mpc coherence scale. We found that the trajectories form a non-trivial caustic-like pattern with strong deviation from isotropy. Thus, measurements of the flux from a source at a given distance will depend on the position of the observer.

About the authors

K. Dolgikh

Institute for Nuclear Research of the Russian Academy of Sciences;Novosibirsk State University

Email: jetp@kapitza.ras.ru
117312, Moscow, Russia; 630090, Novosibirsk, Russia

A. Korochkin

Novosibirsk State University;Universit� Libre de Bruxelles

Email: jetp@kapitza.ras.ru
630090, Novosibirsk, Russia; CP225 Boulevard du Triomphe, 1050, Brussels, Belgium

G. Rubtsov

Institute for Nuclear Research of the Russian Academy of Sciences;Novosibirsk State University

Email: jetp@kapitza.ras.ru
117312, Moscow, Russia

D. Semikoz

APC, Universit� Paris Cit�

Email: jetp@kapitza.ras.ru
Observatoire de Paris 119, 75205, Paris, France

I. Tkachev

Institute for Nuclear Research of the Russian Academy of Sciences;Novosibirsk State University

Author for correspondence.
Email: jetp@kapitza.ras.ru
117312, Moscow, Russia; 630090, Novosibirsk, Russia

References

  1. F. Casse, M. Lemoine, and G. Pelletier, Phys. Rev. D 65, 023002 (2016).
  2. G. Giacinti, M. Kachelriess, and D. V. Semikoz, Phys. Rev. Lett. 108, 261101 (2012).
  3. G. Giacinti, M. Kachelriess, and D. V. Semikoz, JCAP 07, 051 (2018).
  4. D. Harari, S. Mollerach, and E. Roulet, Phys. Rev. D 93, 063002 (2016).
  5. D. Harari, S. Mollerach, and E. Roulet, JHEP 10, 047 (2000).
  6. D. Harari, S. Mollerach, and E. Roulet, and F. Sanchez, JHEP 03, 045 (2002).
  7. K. Dolag, M. Kachelriess, and D. V. Semikoz, JCAP 01, 033 (2009).
  8. D. Harari, S. Mollerach, and E. Roulet, JHEP 08, 022 (1999).
  9. V. Berezinsky and O. Kalashev, Phys. Rev. D 94, 023007 (2016).
  10. R. Alves Batista, A. Dundovic, M. Erdmann, Karl-Heinz Kampert, D. Kuempel, G. M�ller, G. Sigl, A. van Vliet, D. Walz, and T. Winchen, JCAP 05, 038 (2016).
  11. R. Alves Batista et al., JCAP 09, 035 (2022).
  12. A. Zonca, L. Singer, D. Lenz, M. Reinecke, C. Rosset, E. Hivon, and K. Gorski, Journal of Open Source Software 4, 1298 (2019).
  13. K. M. G�rski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J. 622, 759 (2005).
  14. J. Giacalone and J. R. Jokipii, Astrophys. J. 520, 204 (1999).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).