PREDICTION OF LOW-TEMPERATURE SILVER SULFIDE PHASES, DERIVATIVE FROM ARGENTITE
- Authors: Sadovnikov S.I.1, Kostenko M.G.1, Gusev A.I.1, Lukoyanov A.V.2,3
-
Affiliations:
- Institute of Solid State Chemistry Ural Branch of Russian Academy of Sciences
- Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
- First President of Russia Boris Yeltsin Ural Federal University
- Issue: Vol 165, No 3 (2024)
- Pages: 374-388
- Section: Articles
- URL: https://journal-vniispk.ru/0044-4510/article/view/256496
- DOI: https://doi.org/10.31857/S0044451024030076
- ID: 256496
Cite item
Abstract
Such phases of silver sulfide as body-centered cubic argentite and monoclinic acanthite are widely known. Traditionally, acanthite is considered as the only low-temperature phase of silver sulfide. Low-temperature monoclinic acanthite can be considered as a result of the ordering of sulfur atoms in a non-metallic volume-centered cubic sublattice of argentite, accompanied by a redistribution of silver atoms. However, the possible existence of other low-temperature phases of silver sulfide cannot be excluded. The search for the model phases of the silver sulfide was performed using an evolutionary
algorithm. The possibility of the formation of Ag2S phases with cubic, tetragonal, orthorhombic, trigonal, monoclinic and triclinic symmetries is considered. The calculation of the cohesion energy and enthalpy of formation showed that the formation of low-symmetry phases of Ag2S is energetically most favorable. The elastic stiffness constants cij of all predicted phases of Ag2S are calculated and their mechanical stability is determined. The electron state densities of the predicted Ag2S phases are calculated. Channels of disorder-order transitions associated with the formation of low-temperature unrelaxed monoclinic acanthite ɑ-Ag2S and cubic (space group Pn3m) silver sulfide Ag2S from disordered argentite have been found. The spatial distributions of Young’s modulus and comprehensive compression of cubic (space group Pn3m) silver sulfide Ag2S are determined and a weak anisotropy of its elastic properties is established.
About the authors
S. I. Sadovnikov
Institute of Solid State Chemistry Ural Branch of Russian Academy of Sciences
Email: gusev@ihim.uran.ru
Russian Federation, 620990, Yekaterinburg
M. G. Kostenko
Institute of Solid State Chemistry Ural Branch of Russian Academy of Sciences
Email: gusev@ihim.uran.ru
Russian Federation, 620990, Yekaterinburg
A. I. Gusev
Institute of Solid State Chemistry Ural Branch of Russian Academy of Sciences
Author for correspondence.
Email: gusev@ihim.uran.ru
Russian Federation, 620990, Yekaterinburg
A. V. Lukoyanov
Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences; First President of Russia Boris Yeltsin Ural Federal University
Email: gusev@ihim.uran.ru
Russian Federation, 620108, Yekaterinburg; 620002, Yekaterinburg
References
- R. C. Sharma and Y. A. Chang, Bull. Alloy Phase Diagrams 7, 263 (1986).
- W. T. Thompson and S. N. Flengas, Can. J. Chem.49, 1550 (1971).
- S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 12466 (2015).
- R. Sadanaga and S. Sueno, Mineralog. J. Japan. 5, 124 (1967).
- S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A 5, 17676 (2017).
- S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 20495 (2015).
- O. Alekperov, Z. Jahangirli, and R. Paucar, Phys. Stat. Sol. (b) 253, 1 (2016).
- S. Kashida, N. Watanabe, T. Hasegawa, H. Iida, M. Mori, and S. Savrasov, Sol. State Ionics 158, 167 (2003).
- S. F. Etris, in Kirk-Othmer Encyclopedia of Chemical Technology, Metals and Alloys, Wiley, New York (2001), vol. 4, p.761.
- Universal Structure Predictor: Evolutionary Xtallography. Manual. Version 9.4.4, http://uspex-team.org
- A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, paper 244704 (2006).
- A. R. Oganov, A. O. Lyakhov, and M. Valle, Accounts Chem. Res. 44, 227 (2011).
- A.O. Lyakhov, A. R. Oganov, H.T. Stokes, and Q. Zhu, Comp. Phys. Comm. 184, 1172 (2013).
- W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- G. Kresse and J. Furthmьller, Comput. Mater. Sci. 6, 15 (1996).
- Vienna Ab-initio Simulation Package. VASP the GUIDE. April 20 (2016), http://cms.mpi.univie.ac.at/VASP/
- P. E. Blцchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).
- Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, and I. Tanaka, Comp. Mater. Sci. 128, 140 (2017).
- F. Mouhat and F-X. Coudert, Phys. Rev. B 90, 224104 (2014).
- K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
- S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Superlat. Microstr. 83, 35 (2015).
- A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds. Transition Metal Carbides, Nitrides and Oxides, Springer-Verlag, Berlin–Heidelberg–New York (2001).
- O. V. Kovalev, Irreducible Representations of the Space Groups, Gordon and Breach, New York (1965).
- A. I. Kryukov, O. L. Stroyuk, N. N. Zin’chuk, A.V. Korzhak, and S. Ya. Kuchmii, J. Mol. Catal. A 221, 209 (2004).
- S. I. Sadovnikov, Yu. V. Kuznetsova, and A. A. Rempel, Nanostr. Nano-Object. 7, 81 (2016).
- Q. Liu, Y. Pu, Zh. Zhao, J. Wang, and D. Wang, Transact. Tianjin Univ. 26, 273 (2020).
- О. В. Ковалев, Неприводимые и индуцированные представления и копредставления федоровских групп, Наука, Москва (1986).
- https://matrix.reshish.ru
- M. Born, Math. Proc. Camb. Phil. Soc. 36, 160 (1940).
- R. E. Newnham Properties of Materials. Anisotropy, Symmetry, Structure, Oxford Univ. Press, New York (2005).
- T. Gn¨aupel-Herold, P. C. Brand, and H. J. Prask, J. Appl. Crystallogr. 31, 929 (1998).
- C. Zener Elasticity and Anelasticity of Metals, University of Chicago, Chicago (1948).
Supplementary files
