DETERMINATION OF THE BINDING ENERGY AND STRUCTURE OF VAN DER WAALS COMPLEXES OF OXYGEN WITH XENON Xen – O2(n = 1,2)
- Authors: Rogoveshko V.M1,2, Bogomolov A.C1, Baklanov A.V1
-
Affiliations:
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk State University
- Issue: Vol 165, No 1 (2024)
- Pages: 5-13
- Section: Articles
- URL: https://journal-vniispk.ru/0044-4510/article/view/256892
- DOI: https://doi.org/10.31857/S0044451024010012
- ID: 256892
Cite item
Abstract
Interest in van der Waals complexes of oxygen with xenon is due to the alleged participation of such complexes in providing anesthetic action of xenon in medicine The work is devoted to the measurement of the intermolecular binding energy in van der Waals complexes of oxygen with xenon in Xen-O2. Van der Waals complexes of oxygen with xenon were generated in a pulsed molecular beam. The velocity map imaging technique was used to measure the energy distribution and the angular distribution anisotropy over the recoil directions of oxygen atoms arising in the photodissociation of these complexes in the Xen-O2+hν→ Xen+O+O process. The angular distribution over the recoil directions of oxygen atoms with respect to the direction of the polarization of the exciting radiation indicates the dominant contribution of T-shaped complexes, in which xenon atoms are oriented perpendicular to the axis of the O2 molecule. At a low xenon content in the expanding gas mixture, the dominant contribution is provided by T-shaped Xe-O2 complexes with van der Waals binding energy of 156 ± 11 cm-1. With an increase in the xenon concentration, the T-shaped complexes with higher binding energy appear. It is concluded that these complexes have structure Xe2-O2. This assignment is confirmed by the measured velocity map of Xe+ ions which indicates the presence of dimers Xe2 in molecular beam at these conditions. The energy of the van der Waals binding of O2 with Xe2 in Xe2-O2 complex was determined to be 314 ± 30 cm-1, and the structure of these complexes was also proposed.
About the authors
V. M Rogoveshko
Voevodsky Institute of Chemical Kinetics and Combustion; Novosibirsk State University
Email: v.rogoveshko@g.nsu.ru
Russian Federation, 630090, Novosibirsk; 630090, Novosibirsk
A. C Bogomolov
Voevodsky Institute of Chemical Kinetics and Combustion
Email: v.rogoveshko@g.nsu.ru
Russian Federation, 630090, Novosibirsk
A. V Baklanov
Voevodsky Institute of Chemical Kinetics and Combustion
Author for correspondence.
Email: v.rogoveshko@g.nsu.ru
Russian Federation, 630090, Novosibirsk
References
- S. C. Cullen and E. G. Gross, The Anesthetic Properties of Xenon in Animals and Human Beings, with Additional Observations on Krypton, Science 113, 580 (1951).
- T. L. Liu, Y. Xu, and P. Tang, J. Phys. Chem. B 114, 9010 (2010).
- N. N. Andrijchenko, A. Yu. Ermilov, L. Khriachtchev et al., J. Phys. Chem. A 119, 2517 (2015).
- N. Li., D. Lu, L. Yang et al., Anesthesiology 129, 271 (2018).
- J. Smith, H. Z. Haghighi, D. Salahub et al., Sci. Rep. 11, 6287 (2021).
- V. Aquilanti, D. Ascenzi, D. Cappelletti et al., J. Chem. Phys. 109, 3898 (1998).
- J. Wu, M. Kunitski, L. Ph. H. Schmidt et al., J. Chem. Phys. 137, 104308 (2012).
- K. V. Vidma, G. A. Bogdanchikov, A. V. Baklanov et al., J. Chem. Phys. 133, 194306 (2010).
- A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
- Imaging in Molecular Dynamics. Technology and Applications, ed. by B. J.Whitaker, Cambridge Univ. Press, Cambridge (2003).
- A. V. Baklanov, G. A. Bogdanchikov, K. V. Vidma et al., J. Chem. Phys. 126, 124316 (2007).
- А. В. Бакланов, Д. Паркер, Кинетика и катализ 61, 168 (2020).
- A. S. Bogomolov, V. G. Goldort, S. A. Kochubei et al., J. Chem. Phys. 147, 234304 (2017).
- V. N. Ishchenko, S. A. Kochubei, V. I. Makarov et al., On Cooling of Vibrationally Excited Benzene Molecules in Supersonic Molecular Beams, Chem. Phys. Lett. 299, 227 (1999).
- Ionization Potentials of Atoms and Atomic Ions, ed. by D. R. Lide, Handbook of Chem. and Phys. (1992), p. 10.
- A. Kramida, Yu. Ralchenko, J. Reader et al., NIST Atomic Spectra Database (version 5.10), National Institute of Standards and Technology, Gaithersburg, MD (2022).
- A. K. Dham, W. J. Meath, A. R. Allnatt et al., XC and HFD-B Potential Energy Curves for Xe–Xe and Related Physical Properties, Chem. Phys. 142, 173 (1990).
- B. Buijsse, W. J. van der Zande, A. T. J. B. Eppink et al., J. Chem. Phys. 108, 7229 (1998).
- P. C. Cosby and D. L. Huestis, J. Chem. Phys. 97, 6108 (1992).
- A. E. Zarvin, N. G. Korobeishchikov, V. V. Kalyada et al., Eur. Phys. J. D 49, 101 (2008).
Supplementary files
