COHERENT STATES IN THERMAL QUANTUM TRANSPORT

Cover Page

Cite item

Abstract

This paper focuses on describing energy transfer by coherent thermal excitations in dielectrics, metamaterials, and nanoscale systems. Using the second quantization technique, a general formalism of thermal conductivity is proposed, considering both the model of free phonons in heat transfer and the formation of coherent Schrödinger states of the oscillator system. A general form of the time-dependent problem solution with arbitrary initial conditions is obtained. An exact solution is analytically derived for the heat flux carried by coherent phonons created by an electronic wave packet produced by a laser pulse effecting a nanomaterial. The obtained exact form of solution in quadratures provides a basis for quantitative description of coherent phonons with various initial conditions, as well as taking into account thermal distributions, which allows for evaluation of thermal properties of nanocrystals. It is shown that under certain ratios of constants characterizing the interaction of phonons with the electronic subsystem, a time-independent heat flux can be established in the crystal.

About the authors

E. V. Orlenko

Peter the Great St. Petersburg Polytechnic University

Email: eorlenko@mail.ru
Russian Federation, 195251, St. Petersburg

F. E. Orlenko

Saint Petersburg State University of Industrial Technologies and Design

Author for correspondence.
Email: eorlenko@mail.ru
Russian Federation, 191186, St. Petersburg

References

  1. Suixuan Li, Zihao Qin, Huan Wu, Man Li, M. Kunz, A. Alatas, A. Kavner, and Yongjie Hu, Anomalous Thermal Transport under High Pressure in Boron Arsenide, Nature, www.nature.comhttps:// doi.org/10.1038/s41586-022-05381-x.
  2. S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett. 125, 040604 (2020).
  3. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Теоретическая физика, том 5, Наука, Физматлит, Москва (1964).
  4. Е. М. Лифшиц, Л. П. Питаевский, Статистическая физика. Теория конденсированного состояния, Теоретическая физика, том 9, Наука, Физматлит, Москва (1978).
  5. А. В. Юлин, А. В. Пошакинский , А. Н. Поддубный, ЖЭТФ 161, 206 (2022), doi: 10.31857/S0044451022020067.
  6. P. Cipriani, S. Denisov, and A. Politi, Phys. Rev. Lett. 94, 244301 (2005).
  7. C. B. Mendland H. Spohn, Phys. Rev. Lett. 111, 230601 (2013).
  8. A. Dhar, A. Kundu, and A. Kundu, Front. Phys. 7, 159 (2019).
  9. H. Spohn, J. Stat. Phys. 124, 1041 (2006).
  10. A. Mielke, Arch. Ration. Mech. Anal. 181, 401 (2006).
  11. M. Simoncelli, N. Marzari, and F. Mauri, Nat. Phys. 15, 809 (2019).
  12. L. Isaeva, G. Barbalinardo, D. Donadio, and S. Baroni, Nat. Commun. 10, 3853 (2019).
  13. Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, Phys. Rev. B 103, 184307 (2021).
  14. S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, J. Phys. Chem. Lett. 9, 3959 (2018).
  15. M. F¨orst, H. Kurz, T. Dekorsy, and R. P. Leavitt, Phys. Rev. B 67, 8, 085305 (2003).
  16. P. Delsing, A. N. Cleland, M. J. A. Schuetz et al., J. Phys. D 52, 353001 (2019).
  17. S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, J. Phys. Chem. Lett. 9, 3959 (2018).
  18. L. Lindsay, D. A. Broido, and T. L. Reinecke, Phys. Rev. Lett. 111, 25901 (2013).
  19. J. S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, Science 361, 575 (2018).
  20. S. Li et al., Science 361, 579 (2018).
  21. F. Tian et al., Science 361, 582 (2018).
  22. J. S. Kang et al., Nat. Electron 4, 416 (2021).
  23. Y. Cui, Z. Qin, H. Wu, M. Li, and Y. Hu, Nat. Commun. 12, 1284 (2021).
  24. А. Анималу, Квантовая теория кристаллических твердых тел, Мир, Москва (1981), (Alexander O. E. Animalu, Intermediate Quantum Theory of Crystalline Solids, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1977).
  25. А. Н. Базь, Я. Б. Зельдович, А. М. Переломов, Рассеяние, реакции и распады в нерелятивистской квантовой механике, Наука, Физматлит, Москва (1971).
  26. E. V. Orlenko and V. K. Khersonsky, Emission and Absorption of Photons in Quantum Transitions. Coherent States, in: Quantum Science: The Frontier of Physics and Chemistry, ed. by T. Onishi, Springer, Singapore (2022), p. 349, https://doi.org/10.1007/978-981-19-4421-5_6.
  27. R. Berman, F. E. Simon, and J. Wilks, Nature 42se, 277 (1951).
  28. S. Hunsche, K. Wieneke, T. Dekorst, and H. Kurz, Phys. Rev. Lett. 75, 1815 (1995).
  29. T. Dekorsy, G.C. Cho, and H. Kurz, Coherent Phonons in Condensed Media, in: Light Scattering in Solids VIII. Topics in Applied Physics, ed. by M. Cardona and G. Gu¨ntherodt, Vol 76, Springer, Berlin, Heidelberg (2000), https://doi.org/10.1007/BFb0084242.
  30. J. Lukkarinen, Kinetic Theory of Phonons in Weakly Anharmonic Particle Chains, Springer (2016), p. 159.
  31. M. N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M. T. Bulsara, A. J. Schmidt, A. J. Minnich, S. Chen, M. S. Dresselhaus, and Z. Ren, Science 338, 936 (2012). P. B. Rossen, A. Soukiassian, S. Suresha, J. C. Duda, B. M. Foley, C.-H. Lee, and Y. Zhu, Nat. Mater. 13, 168 (2014).
  32. Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, Heat Conduction Theory Including Phonon Coherence, APL Mater. 9, 081102 (2021).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).