DIFFUSION OF HYDROGEN ATOMS FROM Si3N4 DIELECTRIC SUBSTRATES INTO AMORPHOUS AND POLYCRYSTALLINE Si AND Ge FILMS
- Authors: Arapkina L.V.1, Chizh K.V.1, Stavrovskiy D.B.1, Dubkov V.P.1, Storozhevykh M.S.1, Yur'ev V.A.1
-
Affiliations:
- A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences
- Issue: Vol 165, No 5 (2024)
- Pages: 647-654
- Section: Articles
- URL: https://journal-vniispk.ru/0044-4510/article/view/259025
- DOI: https://doi.org/10.31857/S0044451024050043
- ID: 259025
Cite item
Abstract
The results of RHEED and FTIR investigation of polycrystalline and amorphous Si and Ge films deposited on dielectric Si3N4/SiO2/Si (001) substrates are presented. A decrease in the intensity of the IR absorption bands of N–H vibrations in the Si3N4 layers is observed, which is associated with the migration of H atoms from Si3N4 into the growing Si and Ge films. This transfer occurs at 30 ◦C and increases with increasing temperature (30–500 ◦C) and Si (Ge) film thickness (50–200 nm). We consider the experimental results within the framework of a model based on the assumption that the migration of hydrogen atoms from the dielectric Si3N4 into the growing Si and Ge films is controlled by the difference in chemical potentials of hydrogen atoms in the dielectric layer and the Si(Ge) film and is not related to thermal diffusion. This process occurs only during the growth of Si and Ge films and is interrupted with the cessation of growth and the alignment of chemical potential levels.
About the authors
L. V. Arapkina
A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: arapkina@kapella.gpi.ru
Russian Federation, 38 Vavilov Street, Moscow, 119991
K. V. Chizh
A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: arapkina@kapella.gpi.ru
Russian Federation, 38 Vavilov Street, Moscow, 119991
D. B. Stavrovskiy
A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: arapkina@kapella.gpi.ru
Russian Federation, 38 Vavilov Street, Moscow, 119991
V. P. Dubkov
A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: arapkina@kapella.gpi.ru
Russian Federation, 38 Vavilov Street, Moscow, 119991
M. S. Storozhevykh
A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: arapkina@kapella.gpi.ru
Russian Federation, 38 Vavilov Street, Moscow, 119991
V. A. Yur'ev
A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences
Author for correspondence.
Email: arapkina@kapella.gpi.ru
Russian Federation, 38 Vavilov Street, Moscow, 119991
References
- B. J. Hallam, P. G. Hamer, A. M. C. Wenham, C. E. Chan, B. V. Stefani, and S. Wenham, Prog. Photovolt. Res. Appl. 1, 1217 (2020).
- W. Soppe, H. Rieffe, and A. Weeber, Prog. Photovolt. Res. Appl. 13, 551 (2005).
- R. S. Bonilla, B. Hoex, P. Hamer, and P. R. Wilshaw, Phys. Stat. Sol. (a) 214, 1700293 (2017).
- M. Z. Rahman, Renew. Sustain. Energy Rev. 30, 734 (2014).
- A. G. Aberle, Sol. Energy Mater. Sol. Cells 65, 239 (2001).
- J. Z. Xie, S. P. Murarka, X. S. Guo, and W. A. Lanford, J. Vac. Sci. Technol. B 7, 150 (1989).
- P. S. Peercy, H. J. Stein, B. L. Doyle, and S. T. Picraux, J. Electron. Mater. 8, 11 (1979).
- C. Boehme and G. Lucovsky, J. Appl. Phys. 88, 6055 (2000).
- W. Beyer, Phys. Stat. Sol. (a) 213, 1661 (2016).
- W. Beyer, Sol. Energy Mater. Sol. Cells 78, 235 (2003).
- C. G. V. D. Walle and R. A. Street, Mat. Res. Soc. Symp. Proc. 377, 389 (1995).
- J. Robertson, Phil. Mag. B 69, 307 (1994).
- R. A. Street, Phys. Rev. B 43, 2454 (1991).
- P. V. Santos, N. M. Johnson, R. A. Street, M. Hack, R. Thompson, and C. C. Tsai, Phys. Rev. B 47, 10244 (1993).
- W. B. Jackson and C. C. Tsai, Phys. Rev. B 45, 6564 (1992).
- S. C. Deane and M. J. Powell, J. Non-Cryst. Sol. 198200, 295 (1996).
- К. В. Чиж, Л. В. Арапкина, В. П. Дубков, Д. Б. Ставровский, В. А. Юрьев, М. С. Сторожевых, Автометрия 58, 79 (2022).
- P. Paduschek and P. Eichinger, Appl. Phys. Lett. 36, 62 (1980).
- H. J. Stein, J. Electron. Mater. 5, 161 (1976).
- K.V. Chizh, L.V. Arapkina, D.B. Stavrovsky, P. I. Gaiduk, and V. A. Yuryev, Mater. Sci. Semicond. Process. 99, 78 (2019).
- L. V. Arapkina, K. V. Chizh, D. B. Stavrovskii, V. P. Dubkov, E. P. Lazareva, and V. A. Yuryev, Sol. Energy Mater. Sol. Cells 230, 111231 (2021).
- M. S. Storozhevykh, V. P. Dubkov, L. V. Arapkina, K. V. Chizh, S. A. Mironov, V. A. Chapnin, and V. A. Yuryev, Proc. SPIE 10248, 102480O (2017).
- D. Davazoglou and V. E. Vamvakas, J. Electrochem. Soc. 150, F90 (2003).
- E. A. Taft, J. Electrochem. Soc. 118, 1341 (1971).
- W. Beyer, J. Herion, H. Wagner, and U. Zastrow, Phil. Mag. B 63, 269 (1991).
- A. Van Wieringen and N. Warmoltz, Physica 22, 849 (1956).
- Y. L. Huang, Y. Ma, R. Job, and A. G. Ulyashin, J. Appl. Phys. 96, 7080 (2004).
- W. Beyer, J. Non-Cryst. Sol. 198-200, 40 (1996).
Supplementary files
