EVOLUTION OF PLASMA RADIATION FROM BARRIER DISCHARGE IN LOW-PRESSURE NEON. ATOMIC SPECTRUM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a spectroscopic study of the plasma created by a barrier discharge in low-pressure neon are presented, reflecting the evolution of the mechanisms of population of excited levels of the Ne* atom and Ne+* ion depending on the observation time relative to the beginning of the discharge. Analysis of the emission spectrum, correlated with measurements of the time dependences of the intensities of spectral lines, allows us to indicate four stages of spectrum evolution: direct population by electron impact in the active stage (discharge), followed by a stepwise population at its end with a transition, as the electron temperature relaxes, to recombination afterglow. The latter, depending on the gas pressure and the initial electron density, can also contain two stages – the initial one, with the predominance of the mechanism of collisional-radiative recombination of Ne++ and Ne+ ions with electrons as the source of population of all excited levels of the Ne+* ion and neon atom observed in the experiment, and the final stage, the radiation in which is associated with the population of a limited group of levels due to the dissociative recombination of Ne2+ molecular ions with electrons. The main attention in the work is paid to the population kinetics of the levels of configurations 2p53p and 2p54p of the neon atom.

About the authors

V. A. Ivanov

St. Petersburg State University

Email: v.a.ivanov@spbu.ru
Russian Federation, 198504 St. Petersburg

Yu. E. Skoblo

St. Petersburg State University

Author for correspondence.
Email: v.a.ivanov@spbu.ru
Russian Federation, 198504 St. Petersburg

References

  1. V. A. Ivanov, Plasma Sources Sci. Technol. 29, 045022 (2020); DOI: org/10.1088/1361-6595/ab7f4c.
  2. В. А. Иванов, Опт. и спектр. 130, 996 (2022); doi: 10.21883/OS.2022.07.52718.3076-21 [V. A. Ivanov, Opt. Spectr. 130, 799 (2022); doi: 10.21883/EOS.2022.07.54719.3076-21].
  3. В. А. Иванов, Опт. и спектр. 129, 992 (2021); doi: 10.21883/OS.2021.08.51193.1987-21 [V. A. Ivanov, Opt. Spectr. 129,1104 (2021); doi: 10.1134/S0030400X21080099].
  4. U. Kogelschatz, Plasma Chem. Plasma Proc. 23, 1 (2003).
  5. V. F. Tarasenko, E. B. Chernov, M. V. Erofeev, M. L. Lomaev, A. N. Panchenko, V. S. Skakun, E. A. Sosnin, and D. V. Shitz, Appl. Phys. A 69, 327 (1999).
  6. В. А. Иванов, Опт. и спектр. 131, 1537 (2023).
  7. В. А. Иванов, Ю. Э. Скобло, ЖЭТФ 106, 1704 (1994).
  8. A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 19, 870 (1964).
  9. В. А. Иванов, УФН 162, 35 (1992) [V. A. Ivanov, Usp. Fiz. Nauk 162, 35 (1992)].
  10. L. J. Kieffer, Atomic Data 1, 121 (1969); URL: https://physics.nist.gov/PhysRefData/ASD/lines form.html.
  11. J. E. Chilton, M. D. Stewart, Jr., and Chun C. Lin, Phys. Rev. A 61, 052608 (2000).
  12. А. И. Шишпанов, П. С. Бажин, В. В. Залетов, Сборник материалов Всероссийской конференции, Наука, СПбГУ (2022), с. 421.
  13. J. B. Boffard, M. L. Keeler, G. A. Piech, L. W. Anderson, and C. C. Lin, Phys. Rev. A 64, 032708 (2001); doi: 10.1103/PhysRevA.64.032708.
  14. S. S. Baghel, S. Guptal, R. K. Gangwar, and R. Srivastava, Plasma Sources Sci. Technol. 28, 115010 (2019).
  15. V. M. Donelly, J. Phys. D: Appl. Phys. 37, R217 (2004); doi: 10.1088/0022-3727/37/19/R01.
  16. NIST Atomic Spectra Database Lines Form [Electronic source], URL: https://physics.nist.gov/PhysRefData/ASD/ lines form.html.
  17. M. Adibzadeh and C. E. Theodosiou, Atom. Data Nucl. Data Tables 91, 8 (2005); doi: 10.1016/j.adt.2005.07.004.
  18. С. В. Гордеев, В. А. Иванов, Ю.Э.Скобло, Опт. и спектр. 127, 396 (2019);
  19. doi: 10.21883/OS.2019.09.48190.106-19 [S. V. Gordeev, V. A. Ivanov, and Yu. E. Skob-lo, Opt. Spectr. 127, 418 (2019); doi: 10.1134/S0030400X19090133].
  20. A. E. Kramida and G. Nave, Eur. Phys. J. D 39, 331 (2006); doi: 10.1140/epjd/e2006-00121-4.
  21. F. J. de Hoog and H. J. Oskam, J. Appl. Phys. 44, 3496 (1973).
  22. R. Johnsen and M. A. Biondi, Phys. Rev. A 18, 996 (1978).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».