EVALUATION OF THE ROTATING WAVE APPROXIMATION INFLUENCE ON POLARIZATION SPECTRA OF A TWO-LEVEL SYSTEM IN A POLYCHROMATIC FIELD
- Authors: Antipov A.G1, Uvarova S.V1
- 
							Affiliations: 
							- Saint Petersburg State University
 
- Issue: Vol 166, No 5 (2024)
- Pages: 575-587
- Section: ATOMS, MOLECULES, OPTICS
- URL: https://journal-vniispk.ru/0044-4510/article/view/268667
- DOI: https://doi.org/10.31857/S0044451024110014
- ID: 268667
Cite item
Abstract
Polarization spectra of a two-level system in a polychromatic field were obtained in two cases: using the rotating wave approximation and without using this approximation. The obtained spectra were compared using two indicators: the average deviation across the entire frequency range and the deviation at the transition frequency. Both indicators allow quantitative assessment of the distortion in polarization spectra introduced by the application of the rotating wave approximation. The dependencies of the above indicators on key model parameters were obtained – on the central frequency, detuning, and spectral width of the applied polychromatic field. The obtained dependencies allow evaluating the applicability limits of the rotating wave approximation for a given level of acceptable distortions in the polarization spectrum.
About the authors
A. G Antipov
Saint Petersburg State University
														Email: a.antipov@phys.spbu.ru
				                					                																			                												                	Russian Federation, 							199034, Saint Petersburg 						
S. V Uvarova
Saint Petersburg State University
							Author for correspondence.
							Email: usvik2015@gmail.com
				                					                																			                												                	Russian Federation, 							 199034, Saint Petersburg						
References
- G. S. Agarwal, Phys.Rev.A 4, 1778 (1971).
- D. F. Walls, Phys. Lett.A 42, 217 (1972).
- F. Bloch and A. Siegert, Phys.Rev. 57, 522 (1940).
- I. I. Rabi, Phys.Rev. 51, 652 (1937).
- H. Haken, Handbuch der Physik, Springer, Berlin (1970), Vol.XXV/2C.
- L.E. Estes, T.H. Keil, and L.M. Narducci, Phys. Rev. 175, 286 (1968).
- M. S. Conradi, S.A. Altobelli, S. J. Sowko et al., J.Magn.Res. 288, 23 (2018).
- E. Jericha, C. G¨osselsberger, H. Abele et al., Sci.Rep. 10, 5815 (2020).
- E.T. Jaynes and F.W. Cummings, Proc. IEEE 51, 89 (1963).
- W.E. Lamb, Jr., Phys.Rev. 105, 559 (1957).
- W.E. Lamb, Jr., in Quantum Optics and Electronics, Gordon and Breach, New York (1965), p. 329.
- C.Tserkezis, A. I. Fern´andez-Dom´ınguez, P.A.D.Gon,calves et al., Rep.Prog. Phys. 83, 082401 (2020).
- I. Maldonado, J. Villavicencio, L.D. Contreras-Pulido, E. Cota, and J.A. Maytorena, Phys.Rev.B 97, 19531 (2018).
- G. Rastelli and M. Governale, Phys.Rev.B 100, 085435 (2019).
- S. Huber, M. Buchhold, J. Schmiedmayer, and S. Diehl, Phys.Rev.A 97, 043611 (2018).
- C. Jirauschek, M. Riesch, and P. Tzenov, Adv. Theory Simul. 2, 1900018 (2019).
- А. Г. Антипов, С.А. Пулькин, А.С. Сумароков и др., Опт. и спектр. 118, 977 (2015) [A.G. Antipov, S.A. Pulkin, A. S. Sumarokov et al., Opt. Spectr. 118, 945 (2015)].
- T. Armon and L. Friedland, Phys.Rev.A 102, 052817 (2020).
- A.G. Antipov, A.A. Kalinichev, S.A. Pulkin et al., J. Phys.: Conf. Ser. 735, 012029 (2016).
- А. Г. Антипов, Н.И. Матвеева, С.А. Пулькин, С. В. Уварова, Опт. и спектр. 121, 947 (2016) [A.G. Antipov, N. I. Matveeva, S.A. Pul’kin, and S.V. Uvarova, Opt. Spectr. 121, 879 (2016)].
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				
 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					