FRACTAL STRUCTURE OF A SPRUCE BRANCH
- Authors: Grigor'ev S.V.1,2, Shnyrkov O.D.1,2, Pshenichnyy K.A.1, Yashina E.G.1,2
-
Affiliations:
- Petersburg Institute of Nuclear Physics named after B. P. Konstantinov of the National Research Center "Kurchatov Institute"
- Saint Petersburg State University
- Issue: Vol 166, No 6 (2024)
- Pages: 888-899
- Section: STATISTICAL AND NONLINEAR PHYSICS, PHYSICS OF "SOFT" MATTER
- URL: https://journal-vniispk.ru/0044-4510/article/view/274803
- DOI: https://doi.org/10.31857/S0044451024120125
- ID: 274803
Cite item
Abstract
The fractal properties of the spruce branch structure were studied using numerical Fourier analysis. Images of spruce branches from a mature 26-year-old spruce tree, about 13 m in length, were studied at various tree heights. For different branches photographed in various projections, a power- law dependence of spectral intensity I (q) = Aq-N is observed, where N = 2 in the momentum range q from 0.07 to 2 cm−1. Such power law defines the characteristic structure of a spruce branch, described by a logarithmic fractal in twodimensional space in the size range from 5 to 100 cm. The discovered structure represents the distribution of needles on the spruce branch and is related to its photosynthesis function. The transport functions of the branch are provided by the branching structure of twigs, which is described by a classical fractal with dimension 1< Df < 2 in the same momentum range from 0.07 to 2 cm−1.
About the authors
S. V. Grigor'ev
Petersburg Institute of Nuclear Physics named after B. P. Konstantinov of the National Research Center "Kurchatov Institute"; Saint Petersburg State University
Email: grigoryev_sv@pnpi.nrcki.ru
Russian Federation, Leningrad Region, Gatchina, 188300; Saint Petersburg, 198504
O. D. Shnyrkov
Petersburg Institute of Nuclear Physics named after B. P. Konstantinov of the National Research Center "Kurchatov Institute"; Saint Petersburg State University
Email: grigoryev_sv@pnpi.nrcki.ru
Russian Federation, Leningrad Region, Gatchina, 188300; Saint Petersburg, 198504
K. A. Pshenichnyy
Petersburg Institute of Nuclear Physics named after B. P. Konstantinov of the National Research Center "Kurchatov Institute"
Email: grigoryev_sv@pnpi.nrcki.ru
Russian Federation, Leningrad Region, Gatchina, 188300
E. G. Yashina
Petersburg Institute of Nuclear Physics named after B. P. Konstantinov of the National Research Center "Kurchatov Institute"; Saint Petersburg State University
Author for correspondence.
Email: grigoryev_sv@pnpi.nrcki.ru
Russian Federation, Leningrad Region, Gatchina, 188300; Saint Petersburg, 198504
References
- B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1983).
- Y. Kim and D. L. Jaggard, The Fractal Random Array, Proc. of the IEEE 74, 1278 (1986).
- C. Puente, Fractal Design of Multiband Antenna Arrays, Elec. Eng. Dept. Univ. Illinois, Urbana-Champaign, ECE 477 term project (1993).
- C. Puente and R. Pous, Diseoo Fractal de Agrupaciones de Antenas, IX Simposium Nacional URSI, Las Palmas 1, 227 (1994).
- X. Yang, J. Chiochetti, D. Papadopoulos, and L. Susman, Fractal Antenna Elements and Arrays, Applied Microwave and Wireless 5, 34 (1999).
- M. F. Barnsley, Fractals Everywhere, Acad. Press, Boston (1988).
- H. O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer, Berlin (1986).
- Е. Федер, Фракталы, Мир, Москва (1991).
- В. К. Балханов, Ю. Б. Башкуев, Моделирование разрядов молнии фрактальной геометрией, ЖТФ 82(12), 126 (2012).
- А. Г. Бершадский, Фрактальная структура турбулентных вихрей, ЖЭТФ 96, 625 (1989).
- Fractals in Biology and Medicine 1, ed. by T. F. Nonnenmacher, G. A. Losa and E. R. Weibel, Birkhauser Verlag, Basel (1994).
- Fractals in Biology and Medicine 2, ed. by G. Losa, T. F. Nonnenmacher, D. Merlini, and E. R. Weibel, Birkhauser Verlag, Basel (1998).
- Fractals in Biology and Medicine 3, ed. by G. Losa, D. Merlini, T. F. Nonnenmacher and E. R. Weibel, Birkhauser Verlag, Basel (2002).
- Fractals in Biology and Medicine 6, ed. by G. Losa, D. Merlini, T. F. Nonnenmacher and E. R. Weibel, Birkhauser Verlag, Basel (2005).
- N. D. Lorimer, R. G. Haight, and R. A. Leary, The Fractal Forest: Fractal Geometry and Applications in Forest Science, General Technical Report NC-1770, Department of Agriculture, St. Paul (1994).
- L. S. Liebovitch, Fractals and Chaos Simplified for the Life Sciences, Oxford Univ. Press, New York (1998).
- I. C. Andronache, H. Ahammer, H. F. Jelineck et al., Fractal Analysis for Studying the Evolution of Forests, Chaos, Solitons, and Fractals 91, 310 (2016).
- А. И. Гурцев, Ю. Л. Цельникер, Фрактальная структура ветви дерева, Сибирский эколог. ж. 4, 431 (1999).
- G. Arseniou and D. W. MacFarlane, Fractal Dimension of Tree Crowns Explains Species Functional-Trait Responses to Urban Environments at Different Scales, Ecological Applications 31, 2297 (2021).
- C. Eloy, Leonardo’s Rule, Self-Similarity and Wind-Induced Stresses in Trees, Phys. Rev. Lett. 107, 258101 (2011).
- J. O. Indekeu and G. Fleerackers, Logarithmic Fractals and Hierarchical Deposition of Debris, Physica A 261, 294 (1998).
- G.B. West, J.H. Brown and B.J. Enquist, A General Model for the Origin of Allometric Scaling Laws in Biology, Science 276, 122 (1997).
- G. B. West, J. H. Brown, and B.J. Enquist, A General Model for the Structure and Allometry of Plant Vascular Systems, Nature 400, 664 (1999).
- D. Seidel, A Holistic Approach to Determine Tree Structural Complexity Based on Laser Scanning Data and Fractal Analysis, Ecology and Evolution 8, 128 (2018).
- Y. Malhi, T. Jackson, L. Patrick Bentley, A. Lau, A. Shenkin, M. Herold, K. Calders, H. Bartholomeus, and M.I. Disney, New Perspectives on the Ecology of Tree Structure and Tree Communities through Terrestrial Laser Scanning, Interface Focus 8, 20170052 (2018).
- S. V. Grigoriev, O. D. Shnyrkov, P. M. Pustovoit, E. G. Iashina, and K. A. Pshenichnyi, Experimental Evidence for Logarithmic Fractal Structure of Botanical Trees, Phys. Rev. E 105, 044412 (2022).
- С. В. Григорьев, О. Д. Шнырков, К. А. Пшеничный, Е. Г. Яшина, Два этапа формирования структуры ветвления лиственного дерева, ЖЭТФ 165, 438 (2024).
- D. D. Smith, J. S. Sperry, B. J. Enquist, V. M. Savage, K. A. McCulloh, and L. P. Bentley, Deviation from Symmetrically Self-Similar Branching in Trees Predicts Altered Hydraulics, Mechanics, Light Interception and Metabolic Scaling, New Phytologist 201, 217 (2014).
- B. Zeide, Fractal Analysis of Foliage Distribution in Loblolly Pine Crowns, Canad. J. Forest Res. 28, 106 (1998).
- B. Zeide and C. A. Gresham, Fractal Dimensions of Tree Crowns in Three Loblolly Pine Plantations of Coastal South Carolina, Canad. J. Forest Res. 21, 1208 (1991).
- B. Zeide and P. Pfeifer, A Method for Estimation of Fractal Dimension of Tree Crowns, Forest Sci. 37, 1253 (1991).
- D. Zhang, A. Samal, and J.R. Brandle, A Method for Estimating Fractal Dimension of Tree Crowns from Digital Images, Int. J. Pattern Recognition and Artificial Intelligence 21, 561 (2007).
- R. Zwiggelaar and C.R. Bull, Optical Determination of Fractal Dimensions Using Fourier Transforms, Opt. Eng. 34, 1325 (1995).
- А. А. Зинчик , Я. Б. Музыченко, А. В. Смирнов, С. К. Стафеев, Расчет фрактальной размерности регулярных фракталов по картине дифракции в дальней зоне, Научно-технический вестник СПбГУ ИТМО 60, 17 (2009).
- J. Teixeira, Small-Angle Scattering by Fractal Systems, J. Appl. Crystallog. 21, 781 (1988).
- C. Allain and M. Cloitre, Optical Diffraction on Fractals, Phys. Rev. B 33, 3566 (1986).
- Дж. Гудмен, Введение в фурье-оптику, Мир, Москва (1970).
- А. Н. Матвеев, Оптика, Высшая школа, Москва (1985).
- П. М. Пустовойт, Е. Г. Яшина, К. А. Пшеничный, С. В. Григорьев, Классификация фрактальных и нефрактальных объектов в пространстве двух измерений, Поверхность. Рентгеновские, синхротронные и нейтронные исследования 12, 3 (2020).
- Ю. Л. Цельникер, Структура кроны ели, Лесоведение 4, 35 (1994).
- Ю. Л. Цельникер, М. Д. Корзухин, Б.Б. Зейде, Морфологические и физиологические исследования кроны деревьев, Мир Урании, Москва (2000).
- https://github.com/tre3k/fractal.
- С. В. Григорьев, О. Д. Шнырков, К. А. Пшеничный, П. М. Пустовойт, Е. Г. Яшина, Модель фрактальной организации хроматина в двумерном пространстве, ЖЭТФ 163, 428 (2023).
Supplementary files
