A SINGLE LASER OPERATED COLD ATOM GRAVIMETER
- Authors: Bhardwaj K.1, Singh S.1, Ram S.P1, Jain B.1, Kumar V.1,2, Pathak A.3, Tiwari S.3, Tiwari V.B1,2, Mishra S.R1,2
-
Affiliations:
- Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology
- Homi Bhabha National Institute, Training School Complex
- Laser Controls and Instrumentation Division, Raja Ramanna Centre for Advanced Technology
- Issue: Vol 168, No 2 (2025)
- Pages: 172-180
- Section: ATOMS, MOLECULES, OPTICS
- URL: https://journal-vniispk.ru/0044-4510/article/view/307109
- DOI: https://doi.org/10.31857/S004445102508005X
- ID: 307109
Cite item
Abstract
A cold atom gravimeter (CAG) using a single laser system has been developed. In the setup, the laser cooled 87Rb atoms are launched in the vertical upward direction and Doppler sensitive two-photon Raman pulse atom interferometry is applied to measure the gravitational acceleration g experienced by the atoms. Using our gravimeter setup, we have measured the local value of g in our laboratory with a sensitivity of 621 μGal for integration time of 1350 s. The use of single laser system keeps our CAG setup simple and compact, and does not require the phase-locking of different lasers.
About the authors
K. Bhardwaj
Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology
Email: spram@rrcat.gov.in
Indore, India
S. Singh
Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology
Email: spram@rrcat.gov.in
Indore, India
S. P Ram
Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology
Email: spram@rrcat.gov.in
Indore, India
B. Jain
Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology
Email: spram@rrcat.gov.in
Indore, India
V. Kumar
Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology; Homi Bhabha National Institute, Training School Complex
Email: spram@rrcat.gov.in
Indore, India; Mumbai, India
A. Pathak
Laser Controls and Instrumentation Division, Raja Ramanna Centre for Advanced Technology
Email: spram@rrcat.gov.in
452013, Indore, India
S. Tiwari
Laser Controls and Instrumentation Division, Raja Ramanna Centre for Advanced Technology
Email: spram@rrcat.gov.in
Indore, India
V. B Tiwari
Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology; Homi Bhabha National Institute, Training School Complex
Email: spram@rrcat.gov.in
Indore, India; Mumbai, India
S. R Mishra
Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology; Homi Bhabha National Institute, Training School Complex
Author for correspondence.
Email: spram@rrcat.gov.in
Indore, India; Mumbai, India
References
- M. Inguscio and L. Fallani, Atomic Physics: Precise Measurements and Ultracold Matter (2013).
- S. R. Mishra, S. P. Ram, S. K. Tiwari, and H. S.Rawat, Dependence of in-situ Bose Condensate Size on Final Frequency of RF-Field in Evaporative Cooling, Pramana 88, 1 (2017).
- I. Bloch, J. Dalibard, and S. Nascimbene, Quantum Simulations with Ultracold Quantum Gases, Nature Physics 8, 267 (2012).
- P. Asenbaum, C. Overstreet, M. Kim, J. Curti, and M. A. Kasevich, Atom-Interferometric Test of the Equivalence Principle at the 10 Level, Phys. Rev. Lett. 125 (191101 (2020).
- P. Clade, E. de Mirandes, M. Cadoret, S. Guellati-Khelifa, C. Schwob, F. Nez, L. Julien, and F. M. C. Biraben, Determination of the Fine Structure Constant Based on Bloch Oscillations of Ultracold Atoms in a Vertical Optical Lattice, Phys. Rev. Lett. 96, 033001 (2006).
- G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. Tino, Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms, Nature 510, 518 (2014).
- G. M. Tino and F. Vetrano, Is It Possible to Detect Gravitational Waves with Atom Interferometers? Class. Quant. Grav. 24, 2167 (2007).
- P. Delva and E. Rasel, Matter Wave Interferometry and Gravitational Waves, J. Mod. Opt. 56, 1999 (2009).
- P. Arora, A. Awasthi, V. Bharath, A. Acharya, S. Yadav, A. Agarwal, and A. S. Gupta, Atomic Clocks: A Brief History and Current Status of Research in India, Pramana 82, 173 (2014).
- A. Peters, K. Y. Chung, and S. Chu, Measurement of Gravitational Acceleration by Dropping Atoms, Nature 400, 849 (1999).
- I. Kulikov, Gravitational Field Measurement with an Equilibrium Ensemble of Cold Atoms, J. Mod. Opt. 53, 1061 (2006).
- J.-Y. Zhang, W.-J. Xu, S.-D. Sun, Y.-B. Shu, Q. Luo, Y. Cheng, Z.-K. Hu, and M.-K. Zhou, A Car-Based Portable Atom Gravimeter and Its Application in Field Gravity Survey, AIP Advances 11 (2021).
- M. Wright, L. Anastassiou, C. Mishra, J. Davies, A. Phillips, S. Maskell, and J. Ralph, Cold Atom Inertial Sensors for Navigation Applications, Frontiers in Phys. 10, 994459 (2022).
- C.-Y. Li, J.-B. Long, M.-Q. Huang, B. Chen, Y.-M. Yang, X. Jiang, C.-F. Xiang, Z.-L. Ma, D.-Q. He, L.-K. Chen, and S. Chen, Continuous Gravity Measurement with a Portable Atom Gravimeter, Phys. Rev. A 108, 032811 (2022).
- C. Ruan, W. Zhuang, J. Yao, Y. Zhao, Z. Ma, C. Yi, Q. Tian, S. Wu, F. Fang, and Y. Wen, A Transportable Atomic Gravimeter with Constraint-Structured Active Vibration Isolation, Sensors 24 (2024).
- L. Zhang, W. Gao, Q. Li, R.-B. Li, Z. Yao, and S. Lu, A Novel Monitoring Navigation Method for Cold Atom Interference Gyroscope, Sensors 19, 222 (2019).
- A. Hansen, Y.-J. Chen, J. Kitching, and E. Donley, Point-Source Atom Interferometer Gyroscope, Proc. Int. School of Physics "Enrico Fermi", Varenna, IT (2021).
- F. Zhou, F. Jia, X. Liu, Y. Yu, J. Mei, J. Zhang, F. Xie, and Z. Zhong, Improving the Spectral Resolution and Measurement Range of Quantum Microwave Electrometry by Cold Rydberg Atoms, J. Phys. B 56, 025501 (2022).
- D. Braje, S. DeSavage, C. Adler, J. Davis, and F. Narducci, A Frequency Selective Atom Interferometer Magnetometer, J. Mod. Opt. 61, 61 (2014).
- J. Davis and F. Narducci, A Proposal for a Gradient Magnetometer Atom Interferometer, J. Mod. Opt. 55, 3173 (2008).
- M. Weitz, Towards Controlling Larger Quantum Systems: From Laser Cooling to Quantum Computing, IEEE J. Quant. Electron. 36, 1346 (2000).
- N. Poli, F.-Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino, Precision Measurement of Gravity with Cold Atoms in an Optical Lattice and Comparison with a Classical Gravimeter, Phys. Rev. Lett. 106, 038501 (2011).
- Y. Bidel, N. Zahzam, A. Bresson, C. Blanchard, A. Bonnin, J. Bernard, M. Cadoret, T. E. Jensen, R. Forsberg, C. Salaun, S. Lucas, M. F. LequentrecLalancette, D. Rouxel, G. Gabalda, L. Seoane, D. T. Vu, S. Bruinsma, and S. Bonvalot, Airborne Absolute Gravimetry with a Quantum Sensor, Comparison with Classical Technologies, J. Geophys. Research: Solid Earth 128, e2022JB025921 (2022).
- M. Kasevich and S. Chu, Atomic Interferometry Using Stimulated Raman Transitions, Phys. Rev. Lett. 67, 181 (1991)
- M. Kasevich and S. Chu, Measurement of the Gravitational Acceleration of an Atom with a Light-Pulse Atom Interferometer, Appl. Phys. B 54, 321 (1992).
- A. Peters, K. Y. Chung, and S. Chu, High-Precision Gravity Measurements Using Atom Interferometry, Metrologia 38, 25 (2001).
- G. Rosi, Precision Gravity Measurements with Atom Interferometry, PhD Thesis, University of Pisa (2012).
- L. Zhou, Z.-Y. Xiong, W. Yang, B. Tang, W.-C. Peng, Y.-B. Wang, P. Xu, J. Wang, and M.-S. Zhan, Measurement of Local Gravity via a Cold Atom Interferometer, Chinese Phys. Lett. 28, 013701 (2011).
- S. Lellouch, K. Bongs, and M. Holynski, Using Atom Interferometry to Measure Gravity, Contemporary Phys. 63, 138 (2022).
- C.-F. Huang, A. Li, F.-J. Qin, J. Fang, and X. Chen, An Atomic Gravimeter Dynamic Measurement Method Based on Kalman Filter, Measurement Science and Technology 34, 015013 (2022).
- M. de Angelis, A. Bertoldi, L. Cacciapuoti, A. Giorgini, G. Lamporesi, M. Prevedelli, G. Saccorotti, F. Sorrentino, and G. M. Tino, Precision Gravimetry with Atomic Sensors, Measurement Science and Technology 20, 022001 (2008).
- A. E. Afanasiev, P. I. Skakunenko, and V. I. Balykin, Cold Atom Gravimeter Based on an Atomic Fountain and a Microwave Transition, JETP Lett. 119, 84 (2024).
- M. Gilowski, C. Schubert, T. Wendrich, P. Berg, G. Tackmann, W. Ertmer, and E. M. Rasel, High Resolution Rotation Sensor Based on Cold Rubidium Atoms, in 2009 IEEE Intern. Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, 1173 (2009)
- X. Wu, Z. Pagel, B. S. Malek, T. H. Nguyen, F. Zi, D. S. Scheirer, and H. Müller, Gravity Surveys Using a Mobile Atom Interferometer, Science Advances 5, eaax0800 (2019).
- B. Wu, Z. Wang, B. Cheng, Q. Wang, A. Xu, and Q. Lin, The Investigation of a μgal-Level Cold Atom Gravimeter for Field Applications, Metrologia 51, 452 (2014).
- T. Niebauer, Gravimetric Methods-Absolute Gravimeter: Instruments Concepts and Implementation, Geodesy 3, 43 (2007).
- N. Yu, J. Kohel, J. Kellogg, and L. Maleki, Development of an Atom-Interferometer Gravity Gradiometer for Gravity Measurement From Space, Appl. Phys. B 84, 647 (2006).
- G. M. Tino, F. Sorrentino, D. Aguilera, B. Battelier, A. Bertoldi, Q. Bodart, K. Bongs, P. Bouyer, C. Braxmaier, L. Cacciapuoti et al., Precision Gravity Tests with Atom Interferometry in Space, Nuclear Phys. B Proc. Suppl. 243, 203 (2013).
- A. Peters, K. Y. Chung, and S. Chu, High-Precision Gravity Measurements Using Atom Interferometry, Metrologia 38, 25 (2001).
- Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, Demonstration of an Ultrahigh-Sensitivity Atom-Interferometry Absolute Gravimeter, Phys. Rev. A 88, 043610 (2013).
- S. Singh, B. Jain, S. P. Ram, V. B. Tiwari, and S. R. Mishra, A Single Laser-Operated Magneto-Optical Trap for Rb Atomic Fountain, Pramana 95, 1 (2021).
- K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, Theoretical Analysis of Velocity-Selective Raman Transitions, Phys. Rev. A 45, 342 (1992).
- J. N. Tinsley, Construction of a Rubidium Fountain Atomic Interferometer for Gravity Gradiometry, PhD Thesis, University of Liverpool (2019).
- M. Kasevich and S. Chu, Measurement of the Gravitational Acceleration of an Atom with a Light-Pulse Atom Interferometer, Appl. Phys. B 54, 321 (1992).
- A. J. Dunning, Coherent Atomic Manipulation and Cooling: Interferometric Laser Cooling and Composite Pulses for Atom Interferometry, Springer Int. Publ. (2015).
- M. Guo, J. Bai, D. Hu, Z. Tang, J. You, R. Chen, and Y. Wang, A Vibration Correction System for Cold Atom Gravimeter, Measurement Science and Technology 35, 035011 (2023).
- N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor, THE Development and Evaluation of the Earth Gravitational Model 2008, J. Geophys. Research: Solid Earth 117 (2012).
Supplementary files
