EXPLORING ΛCDM EXTENSIONS WITH SPT-3G AND PLANCK DATA: 4σ EVIDENCE FOR NON-ZERO NEUTRINO MASSES AND IMPLICATIONS OF EXTENDED DARK ENERGY MODELS FOR COSMOLOGICAL TENSIONS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

--

Sobre autores

A. Chudaykin

Universite de Geneve, Departement de Physique Theorique; Institute for Nuclear Research of the Russian Academy of Sciences

Email: jetp@kapitza.ras.ru
Geneve, Switzerland; Moscow, Russia

D. Gorbunov

Institute for Nuclear Research of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: jetp@kapitza.ras.ru
Moscow, Russia; Dolgoprudny, Moscow region, Russia

N. Nedelko

Institute for Nuclear Research of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: jetp@kapitza.ras.ru
Moscow, Russia

Bibliografia

  1. E. Abdalla et al., titleCosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies, JHEAp 34, 49, rXiv:astroph.CO/2203.06142 (2022).
  2. A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, titleCosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM, Astrophys. J. Lett. 908, L6, arXiv:astroph.CO/2012.08534 (2021).
  3. N. Aghanim et al. (collaborationPlanck), titlePlanck 2018 Results. VI. Cosmological Parameters, Astron. Astrophys. 641, A6, arXiv:astro-ph.CO/1807.06209 (2020).
  4. A. G. Riess et al., titleA Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team, Astrophys. J. Lett. 934, L7, arXiv:astro-ph.CO/2112.04510 (2022).
  5. W. L. Freedman, B. F. Madore, T. Hoyt, I. S. Jang, R. Beaton, M. G. Lee, A. Monson, J. Neeley, and J. Rich, titleCalibration of the Tip of the Red Giant Branch (TRGB), (2020), arXiv:astroph.GA/2002.01550.
  6. K. C. Wong et al., titleH0LiCOW – XIII. A 2.4 per Cent Measurement of H0 from Lensed Quasars: 5.3σ Tension between Early- and Late-Universe Probes, Mon. Not. Roy. Astron. Soc. 498, 1420, arXiv:astroph.CO/1907.04869 (2020).
  7. S. Birrer et al., titleTDCOSMO - IV. Hierarchical Time-Delay Cosmography – Joint Inference of the Hubble Constant and Galaxy Density Profiles, Astron. Astrophys. 643, A165, arXiv:astroph.CO/2007.02941 (2020).
  8. E. Di Valentino et al., titleCosmology Intertwined III: fσ8 and S8, arXiv:astro-ph.CO/2008.11285.
  9. T. M. C. Abbott et al. (collaborationDES), titleDark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing, arXiv:astro-ph.CO/2105.13549.
  10. M. Asgari et al. (collaborationKiDS), titleKiDS-1000 Cosmology: Cosmic Shear Constraints and Comparison between Two Point Statistics, Astron. Astrophys. 645, A104, arXiv:astro-ph.CO/2007.15633 (2021).
  11. R. Dalal et al., titleHyper Suprime-Cam Year 3 Results: Cosmology from Cosmic Shear Power Spectra, arXiv:astro-ph.CO/2304.00701.
  12. O. H. E. Philcox and M. M. Ivanov, titleThe BOSS DR12 Full-Shape Cosmology: ΛCDM Constraints from the Large-Scale Galaxy Power Spectrum and Bispectrum Monopole, arXiv:astroph.CO/2112.04515.
  13. R. C. Nunes and S. Vagnozzi, titleArbitrating the S8 Discrepancy with Growth Rate Measurements from Redshift-Space Distortions, Mon. Not. Roy. Astron. Soc. 505, 5427, arXiv:astro-ph.CO/2106.01208 (2021).
  14. N. Aghanim et al. (collaborationPlanck), titlePlanck Intermediate Results. LI. Features in the Cosmic Microwave Background Temperature Power Spectrum and Shifts in Cosmological Parameters, Astron. Astrophys. 607, A95, arXiv:astro-ph.CO/1608.02487 (2017).
  15. P. Motloch and W. Hu, titleLensinglike Tensions in the P lanck Legacy Release, Phys. Rev. D101, 083515, arXiv:astro-ph.CO/1912.06601 (2020).
  16. D. Dutcher et al. (collaborationSPT-3G), titleMeasurements of the E-Mode Polarization and Temperature-E-Mode Correlation of the CMB from SPT-3G 2018 Data, arXiv:astro-ph.CO/2101.01684.
  17. S. Aiola et al. (collaborationACT), titleThe Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters, JCAP 12, 047, arXiv:astroph.CO/2007.07288 (2020).
  18. A. Chudaykin, D. Gorbunov, and N. Nedelko, titleCombined Analysis of Planck and SPTPol Data Favors the Early Dark Energy Models, JCAP 2008, 013, arXiv:astro-ph.CO/2004.13046 (2020).
  19. A. Chudaykin, D. Gorbunov, and N. Nedelko, titleExploring an Early Dark Energy Solution to the Hubble Tension with Planck and SPTPol Data, Phys. Rev. D 103, 043529, arXiv:astro-ph.CO/2011.04682 (2021).
  20. W. Yang, S. Pan, E. Di Valentino, E. N. Saridakis, and S. Chakraborty, titleObservational Constraints on One-Parameter Dynamical Dark-Energy Parametrizations and the H0 Tension, Phys. Rev. D 99, 043543, arXiv:astro-ph.CO/1810.05141 (2019).
  21. E. Di Valentino, A. Melchiorri, and J. Silk, titleCosmological Constraints in Extended Parameter Space from the Planck 2018 Legacy Release, JCAP 01, 013, arXiv:astro-ph.CO/1908.01391 (2020).
  22. S. Vagnozzi, titleNew physics in light of the H0 tension: An alternative view, Phys. Rev. D 102, 023518, arXiv:astro-ph.CO/1907.07569 (2020).
  23. R. E. Keeley, S. Joudaki, M. Kaplinghat, and D. Kirkby, titleImplications of a Transition in the Dark Energy Equation of State for the H0 and σ8 Tensions, JCAP 12, 035, arXiv:astroph.CO/1905.10198 (2019).
  24. W. Yang, E. Di Valentino, S. Pan, Y. Wu, and J. Lu, titleDynamical Dark Energy after Planck CMB Final Release and H0 Tension, Mon. Not. Roy. Astron. Soc. 501, 5845, arXiv:astro-ph.CO/2101.02168 (2021).
  25. N. Roy, S. Goswami, and S. Das, titleQuintessence or Phantom: Study of Scalar Field Dark Energy Models through a General Parametrization of the Hubble Parameter, Phys. Dark Univ. 36, 101037, arXiv:astroph.CO/2201.09306 (2022).
  26. R. K. Sharma, K. L. Pandey, and S. Das, titleImplications of an Extended Dark Energy Model with Massive Neutrinos, Astrophys. J. 934, 113, arXiv:astroph.CO/2202.01749 (2022).
  27. G.-B. Zhao, R. G. Crittenden, L. Pogosian, and X. Zhang, titleExamining the Evidence for Dynamical Dark Energy, Phys. Rev. Lett. 109, 171301, arXiv:astro-ph.CO/1207.3804 (2012).
  28. G.-B. Zhao et al., titleDynamical Dark Energy in Light of the Latest Observations, Nature Astron. 1, 627, arXiv:astro-ph.CO/1701.08165 (2017).
  29. Y. Wang, L. Pogosian, G.-B. Zhao, and A. Zucca, titleEvolution of Dark Energy Reconstructed from the Latest Observations, Astrophys. J. Lett. 869, L8, arXiv:astro-ph.CO/1807.03772 (2018).
  30. K. Dutta, Ruchika, A. Roy, A. A. Sen, and M. M. Sheikh-Jabbari, titleBeyond ΛCDM with Low and High Redshift Data: Implications for Dark Energy, Gen. Rel. Grav. 52, 15, arXiv:astroph.CO/1808.06623 (2020).
  31. S. Capozziello, Ruchika, and A. A. Sen, titleModel Independent Constraints on Dark Energy Evolution from Low-Redshift Observations, Mon. Not. Roy. Astron. Soc. 484, 4484, arXiv:astro-ph.CO/1806.03943 (2019).
  32. L. Heisenberg, H. Villarrubia-Rojo, and J. Zosso, titleSimultaneously Solving the H0 and σ8 Tensions with Late Dark Energy, arXiv:astroph.CO/2201.11623.
  33. G. Alestas and L. Perivolaropoulos, titleLate-Time Approaches to the Hubble Tension Deforming H(z), Worsen the Growth Tension, Mon. Not. Roy. Astron. Soc. 504, 3956, arXiv:astro-ph.CO/2103.04045 (2021).
  34. E. Di Valentino, A. Mukherjee, and A. A. Sen, titleDark Energy with Phantom Crossing and the H0 Tension, Entropy 23, 404, arXiv:astroph.CO/2005.12587 (2021).
  35. H. K. Jassal, J. S. Bagla, and T. Padmanabhan, titleUnderstanding the Origin of CMB Constraints on Dark Energy, Mon. Not. Roy. Astron. Soc. 405, 2639, /astro-ph/0601389 (2010).
  36. J. Henning et al. (collaborationSPT), titleMeasurements of the Temperature and E-Mode Polarization of the CMB from 500 Square Degrees of SPTpol Data, Astrophys. J. 852, 97, arXiv:astroph.CO/1707.09353 (2018).
  37. M. M. Ivanov, M. Simonović, and M. Zaldarriaga, titleCosmological Parameters from the BOSS Galaxy Power Spectrum, arXiv:astro-ph.CO/1909.05277.
  38. M. M. Ivanov, O. H. E. Philcox, M. Simonović, M. Zaldarriaga, T. Nishimichi, and M. Takada, titleCosmological Constraints without Fingers of God, arXiv:astro-ph.CO/2110.00006.
  39. O. H. E. Philcox, M. M. Ivanov, M. Simonović, and M. Zaldarriaga, titleCombining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6% CMB-independent Constraint on H0, JCAP 05, 032, arXiv:astro-ph.CO/2002.04035 (2020).
  40. A. Chudaykin, M. M. Ivanov, O. H. E. Philcox, and M. Simonovi?, titleNon-linear Perturbation Theory Extension of the Boltzmann Code CLASS, Phys. Rev. D102, 063533, arXiv:astro-ph.CO/2004.10607 (2020).
  41. B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, titleConservative Constraints on Early Cosmology: An Illustration of the Monte Python Cosmological Parameter Inference Code, JCAP 1302, 001, arXiv:astro-ph.CO/1210.7183 (2013).
  42. T. Brinckmann and J. Lesgourgues, titleMontePython 3: Boosted MCMC Sampler and Other Features, Phys. Dark Univ. 24, 100260, arXiv:astroph.CO/1804.07261 (2019).
  43. A. Lewis and S. Bridle, titleCosmological Parameters from CMB and Other Data: A Monte Carlo Approach, Phys. Rev. D 66, 103511, /astro-ph/0205436 (2002).
  44. A. Lewis, titleEfficient Sampling of Fast and Slow Cosmological Parameters, Phys. Rev. D 87, 103529, arXiv:astro-ph.CO/1304.4473 (2013).
  45. A. Lewis, titleGetDist: A Python Package for Analysing Monte Carlo Samples, arXiv:astroph.IM/1910.13970.
  46. W. L. K. Wu et al., titleA Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data, Astrophys. J. 884, 70, arXiv:astro-ph.CO/1905.05777 (2019).
  47. R. De Belsunce, S. Gratton, W. Coulton, and G. Efstathiou, titleInference of the Optical Depth to Reionization from Low Multipole Temperature and Polarisation Planck Data, arXiv:astro-ph.CO/2103.14378.
  48. O. H. E. Philcox, titleCosmology without Window Functions: Quadratic Estimators for the Galaxy Power Spectrum, Phys. Rev. D 103, 103504, arXiv:astro-ph.CO/2012.09389 (2021).
  49. O. H. E. Philcox, titleCosmology without Window Functions. II. Cubic Estimators for the Galaxy Bispectrum, Phys. Rev. D 104, 123529, arXiv:astroph.CO/2107.06287 (2021).
  50. F. Beutler and P. McDonald, titleUnified Galaxy Power Spectrum Measurements from 6dFGS, BOSS, and eBOSS, JCAP 11, 031, arXiv:astroph.CO/2106.06324 (2021).
  51. A. Chudaykin, K. Dolgikh, and M. M. Ivanov, titleConstraints on the Curvature of the Universe and Dynamical Dark Energy from the Full-Shape and BAO Data, Phys. Rev. D 103, 023507, arXiv:astroph.CO/2009.10106 (2021).
  52. T. Nishimichi, G. D’Amico, M. M. Ivanov, L. Senatore, M. Simonović, M. Takada, M. Zaldarriaga, and P. Zhang, titleBlinded Challenge for Precision Cosmology with Large-Scale Structure: Results from Effective Field Theory for the Redshift-Space Galaxy Power Spectrum, Phys. Rev. D 102, 123541, arXiv:astro-ph.CO/2003.08277 (2020).
  53. G. D’Amico, J. Gleyzes, N. Kokron, K. Markovic, L. Senatore, P. Zhang, F. Beutler, and H. Gil-Marín, titleThe Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of LargeScale Structure, JCAP 05, 005, arXiv:astroph.CO/1909.05271 (2020).
  54. M. M. Ivanov, O. H. E. Philcox, T. Nishimichi, M. Simonović, M. Takada, and M. Zaldarriaga, titlePrecision Analysis of the Redshift-Space Galaxy Bispectrum, Phys. Rev. D 105, 063512, arXiv:astroph.CO/2110.10161 (2022).
  55. A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, titleThe Clustering of the SDSS DR7 Main Galaxy Sample – I. a 4 per Cent Distance Measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449, 835, arXiv:astro-ph.CO/1409.3242 (2015).
  56. F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, titleThe 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416, 3017, arXiv:astro-ph.CO/1106.3366 (2011).
  57. R. Neveux et al., titleThe Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: BAO and RSD Measurements from the Anisotropic Power Spectrum of the Quasar Sample between Redshift 0.8 and 2.2, Mon. Not. Roy. Astron. Soc. 499, 210, arXiv:astro-ph.CO/2007.08999 (2020).
  58. H. du Mas des Bourboux et al., titleThe Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations with Lyα Forests, Astrophys. J. 901, 153, arXiv:astroph.CO/2007.08995 (2020).
  59. A. de Mattia et al., titleThe Completed SDSSIV Extended Baryon Oscillation Spectroscopic Survey: Measurement of the BAO and Growth Rate of Structure of the Emission Line Galaxy Sample from the Anisotropic Power Spectrum between Redshift 0.6 and 1.1, Mon. Not. Roy. Astron. Soc. 501, 5616, arXiv:astro-ph.CO/2007.09008 (2021).
  60. M. M. Ivanov, titleCosmological Constraints from the Power Spectrum of eBOSS Emission Line Galaxies, Phys. Rev. D 104, 103514, arXiv:astroph.CO/2106.12580 (2021)
  61. C. Hikage et al. (collaborationHSC), titleCosmology from Cosmic Shear Power Spectra with Subaru Hyper Suprime-Cam First-Year Data, Publ. Astron. Soc. Jap. 71, 43, arXiv:astro-ph.CO/1809.09148 (2019).
  62. K. L. Greene and F.-Y. Cyr-Racine, titleHubble Distancing: Focusing on Distance Measurements in Cosmology, JCAP 06, 002, arXiv:astroph.CO/2112.11567 (2022).
  63. D. Camarena and V. Marra, titleOn the Use of the Local Prior on the Absolute Magnitude of Type Ia Supernovae in Cosmological Inference, Mon. Not. Roy. Astron. Soc. 504, 5164, arXiv:astroph.CO/2101.08641 (2021).
  64. D. M. Scolnic et al. (collaborationPan-STARRS1), titleThe Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859, 101, arXiv:astroph.CO/1710.00845 (2018).
  65. P. Lemos, E. Lee, G. Efstathiou, and S. Gratton, titleModel Independent H(z) Reconstruction Using the Cosmic Inverse Distance Ladder, Mon. Not. Roy. Astron. Soc. 483, 4803, arXiv:astro-ph.CO/1806.06781 (2019).
  66. V. Poulin, K. K. Boddy, S. Bird, and M. Kamionkowski, titleImplications of an Extended Dark Energy Cosmology with Massive Neutrinos for Cosmological Tensions, Phys. Rev. D 97, 123504, arXiv:astro-ph.CO/1803.02474 (2018).
  67. B. R. Dinda, titleCosmic Expansion Parametrization: Implication for Curvature and H0 Tension, Phys. Rev. D 105, 063524, arXiv:astroph.CO/2106.02963 (2022).
  68. R. E. Keeley and A. Shafieloo, titleRuling Out New Physics at Low Redshift as a Solution to the H0 Tension, arXiv:astro-ph.CO/2206.08440.
  69. M. M. Schmittfull, A. Challinor, D. Hanson, and A. Lewis, titleJoint analysis of CMB temperature and lensing-reconstruction power spectra, Phys. Rev. D 88, 063012, arXiv:astro-ph.CO/1308.0286 (2013).
  70. J. Peloton, M. Schmittfull, A. Lewis, J. Carron, and O. Zahn, titleFull Covariance of CMB and Lensing Reconstruction Power Spectra, Phys. Rev. D 95, 043508, arXiv:astro-ph.CO/1611.01446 (2017).
  71. G. Addison, Y. Huang, D. Watts, C. Bennett, M. Halpern, G. Hinshaw, and J. Weiland, titleQuantifying Discordance in the 2015 Planck CMB Spectrum, Astrophys. J. 818, 132, arXiv:astroph.CO/1511.00055 (2016).
  72. N. Aghanim et al. (collaborationPlanck), titlePlanck 2015 Results. XI. CMB Power Spectra, Likelihoods, and Robustness of Parameters, Astron. Astrophys. 594, A11, arXiv:astro-ph.CO/1507.02704 (2016).
  73. F. Bianchini et al. (collaborationSPT), titleConstraints on Cosmological Parameters from the 500 deg2 SPTpol Lensing Power Spectrum, Astrophys. J. 888, 119, arXiv:astro-ph.CO/1910.07157 (2020).
  74. P. Motloch and W. Hu, titleTensions between Direct Measurements of the Lens Power Spectrum from Planck Data, Phys. Rev. D 97, 103536, arXiv:astroph.CO/1803.11526 (2018).
  75. E. Di Valentino and A. Melchiorri, titleNeutrino Mass Bounds in the Era of Tension Cosmology, arXiv:astro-ph.CO/2112.02993.
  76. H. Akaike, titleA new look at the statistical model identification, IEEE Transactions on Automatic Control 19, 716 (1974), doi: 10.1109/TAC.1974.1100705.
  77. T. Delubac et al. (collaborationBOSS), titleBaryon Acoustic Oscillations in the Lyα Forest of BOSS DR11 Quasars, Astron. Astrophys. 574, A59, arXiv:astro-ph.CO/1404.1801 (2015).
  78. R. C. Bernardo, D. Grandón, J. L. Said, and V. H. Cárdenas, titleParametric and Nonparametric Methods Hint Dark Energy Evolution, arXiv:astroph.CO/2111.08289.
  79. G. Efstathiou, titleTo H0 or Not to H0?, Mon. Not. Roy. Astron. Soc. 505, 3866, arXiv:astroph.CO/2103.08723 (2021).
  80. G. Benevento, W. Hu, and M. Raveri, titleCan Late Dark Energy Transitions Raise the Hubble Constant?, Phys. Rev. D 101, 103517, arXiv:astroph.CO/2002.11707 (2020).
  81. E. Macaulay et al. (collaborationDES), titleFirst Cosmological Results using Type Ia Supernovae from the Dark Energy Survey: Measurement of the Hubble Constant, Mon. Not. Roy. Astron. Soc. 486, 2184, arXiv:astro-ph.CO/1811.02376 (2019).
  82. S. M. Feeney, H. V. Peiris, A. R. Williamson, S. M. Nissanke, D. J. Mortlock, J. Alsing, and D. Scolnic, titleProspects for Resolving the Hubble Constant Tension with Standard Sirens, Phys. Rev. Lett. 122, 061105, arXiv:astro-ph.CO/1802.03404 (2019).
  83. D. Camarena and V. Marra, titleA New Method to Build the (Inverse) Distance Ladder, Mon. Not. Roy. Astron. Soc. 495, 2630, arXiv:astroph.CO/1910.14125 (2020).
  84. M. Rigault et al. (collaborationNearby Supernova factory), titleEvidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory indicated by Local Hα, Astron. Astrophys. 560, A66, arXiv:astro-ph.CO/1309.1182 (2013).
  85. M. Rigault et al., titleConfirmation of a Star Formation Bias in Type Ia Supernova Distances and its Effect on Measurement of the Hubble Constant, Astrophys. J. 802, 20, arXiv:astro-ph.CO/1412.6501 (2015).
  86. M. Rigault et al. (collaborationNearby Supernova Factory), titleStrong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate, Astron. Astrophys. 644, A176, arXiv:astro-ph.CO/1806.03849 (2020).
  87. M. Briday et al., titleAccuracy of Environmental Tracers and Consequences for Determining the Type Ia Supernova Magnitude Step, Astron. Astrophys. 657, A22, arXiv:astro-ph.CO/2109.02456 (2022).
  88. D. O. Jones, A. G. Riess, and D. M. Scolnic, titleReconsidering the Effects of Local Star Formation On Type Ia Supernova Cosmology, Astrophys. J. 812, 31, arXiv:astro-ph.CO/1506.02637 (2015).
  89. D. O. Jones et al. (collaborationFSS), titleThe Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope, Astrophys. J. 881, 19, arXiv:astroph.CO/1811.09286 (2019).
  90. A. G. Riess et al., titleA 2.4% Determination of the Local Value of the Hubble Constant, Astrophys. J. 826, 56, arXiv:astro-ph.CO/1604.01424 (2016).
  91. A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, titleLarge Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876, 85, arXiv:astro-ph.CO/1903.07603 (2019).
  92. L. Perivolaropoulos and F. Skara, titleHubble Tension or a Transition of the Cepheid SnIa Calibrator Parameters?, Phys. Rev. D 104, 123511, arXiv:astro-ph.CO/2109.04406 (2021).
  93. E. Mortsell, A. Goobar, J. Johansson, and S. Dhawan, titleSensitivity of the Hubble Constant Determination to Cepheid Calibration, Astrophys. J. 933, 212, arXiv:astro-ph.CO/2105.11461 (2022).
  94. E. Mortsell, A. Goobar, J. Johansson, and S. Dhawan, titleThe Hubble Tension Revisited: Additional Local Distance Ladder Uncertainties, Astrophys. J. 935, 58, arXiv:astro-ph.CO/2106.09400 (2022).
  95. V. Marra and L. Perivolaropoulos, titleRapid Transition of Geff at zt≃0.01 as a Possible Solution of the Hubble and Growth Tensions, Phys. Rev. D 104, L021303, arXiv:astro-ph.CO/2102.06012 (2021).
  96. G. Alestas, L. Kazantzidis, and L. Perivolaropoulos, titlew − M Phantom Transition at zt <0.1 as a Resolution of the Hubble Tension, Phys. Rev. D 103, 083517, arXiv:astro-ph.CO/2012.13932 (2021).
  97. J. L. Bernal, L. Verde, and A. G. Riess, titleThe Trouble with H0, JCAP 10, 019, arXiv:astroph.CO/1607.05617 (2016).
  98. Y.-P. Teng, W. Lee, and K.-W. Ng, titleConstraining the Dark-Energy Equation of State with Cosmological Data, Phys. Rev. D 104, 083519, arXiv:astroph.CO/2105.02667 (2021).
  99. R. Trotta, titleBayes in the sky: Bayesian inference and model selection in cosmology, Contemp. Phys. 49, 71, arXiv:astro-ph/0803.4089 (2008).
  100. A. Heavens, Y. Fantaye, A. Mootoovaloo, H. Eggers, Z. Hosenie, S. Kroon, and E. Sellentin, titleMarginal Likelihoods from Monte Carlo Markov Chains, arXiv:stat.CO/1704.03472.
  101. R. E. Kass and A. E. Raftery, titleBayes Factors, J. Am. Statist. Assoc. 90, 773 (1995), doi: 10.1080/01621459.1995.10476572.
  102. P. Ade et al. (collaborationSimons Observatory), titleThe Simons Observatory: Science Goals and Forecasts, JCAP 02, 056, arXiv:astro-ph.CO/1808.07445 (2019).
  103. K. N. Abazajian et al. (collaborationCMBS4), titleCMB-S4 Science Book, First Edition, arXiv:astro-ph.CO/1610.02743.
  104. L. Balkenhol et al. (collaborationSPT-3G), titleA Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set, arXiv:astroph.CO/2212.05642.
  105. T. Simon, P. Zhang, and V. Poulin, titleCosmological Inference from the EFTofLSS: the eBOSS QSO Full-Shape Analysis, arXiv:astro-ph.CO/2210.14931.
  106. A. Chudaykin and M. M. Ivanov, titleCosmological Constraints from the Power Spectrum of eBOSS Quasars, Phys. Rev. D 107, 043518, arXiv:astroph.CO/2210.17044 (2023).
  107. M. M. Ivanov, O. H. E. Philcox, G. Cabass, T. Nishimichi, M. Simonović, and M. Zaldarriaga, titleCosmology with the Galaxy Bispectrum Multipoles: Optimal Estimation and Application to BOSS Data, arXiv:astro-ph.CO/2302.04414.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».