PEREKLYuChENIE ZAKRYTOGO MEMRISTORA NA PODVIZhNYKh VAKANSIYaKh V MATERIALE S LINEYNOY ZAVISIMOST'Yu UDEL'NOGO SOPROTIVLENIYa OT IKh KONTsENTRATsII
- Authors: Boylo I.V1, Metlov K.L1
- 
							Affiliations: 
							
- Issue: Vol 168, No 4 (2025)
- Pages: 569-575
- Section: ELECTRONIC PROPERTIES OF SOLIDS
- URL: https://journal-vniispk.ru/0044-4510/article/view/317108
- DOI: https://doi.org/10.7868/S3034641X25100134
- ID: 317108
Cite item
Abstract
References
- L. Chua, Memristor – the Missing Circuit Element, IEEE Trans. Circuit Theory 18, 507 (1971).
- L. Chua and S. M. Kang, Memristive Devices and Systems, Proc. IEEE 64, 209 (1976).
- D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The Missing Memristor Found, Nature 453, 80 (2008).
- W. Rainer and A. Masakazu, Nanotonics-Based Resistive Switching Memories, Nat. Mater. 6, 833 (2007).
- A. Sawa, Resistive Switching in Transition Metal Oxides, Mater. Today 11, 28 (2008).
- B. Bryant, Ch. Renner, Y. Tokunaga et al., Imaging Oxygen Defects and Their Motion at a Manganite Surface, Nat. Commun. 2, 212 (2011).
- Y. Lide, I. Sampo, and v. D. Sebastian, Direct Observation of Oxygen Vacancy-Driven Structural and Resistive Phase Transitions in La2/3Sr1/3MnO3, Nat. Commun. 8, 14544 (2017).
- N. V. Agudov, A. V. Safonov, A. V. Krichigin et al., Nonstationary Distributions and Relaxation Times in a Stochastic Model of Memristor, J. Stat. Mech. 2020, 024003 (2020).
- N. Agudov, A. Dubkov, A. Safonov et al., Stochastic Model of Memristor Based on the Length of Conductive Region, Chaos Soliton Fract. 150, 111131 (2021).
- J. B. Roldán, E. Miranda, D. Maldonado et al., Variability in Resistive Memories, Adv. Intell. Syst. 5, 2200338 (2023).
- I. V. Boylo and K. L. Metlov, Nonlinear Effects in Memristors with Mobile Vacancies, R. Soc. Open Sci. 8, 210677 (2021).
- И. В. Бойло, К. Л. Метлов, Частотная зависимость гистеренка движения вакансий в закрытом мемристоре на основе точно решаемой модели управляемой нелинейной диффузии, ЖЭТФ 166, 858 (2024).
- W. Zhang, A. Thiess, P. Zalden et al., Role of Vacancies in Metal-Insulator Transitions of Crystalline Phase-Change Materials, Nat. Mater. 11, 952 (2012).
- L. Wang, S. Dash, L. Chang et al., Oxygen Vacancy Induced Room-Temperature Metal-Insulator Transition in Nickelate Films and Its Potential Application in Photovoltaics, ACS Appl. Mater. Interfaces 8, 9769 (2016).
- L. Chen, X. Wang, D. Wan et al., Tuning the Phase Transition Temperature, Electrical and Optical Properties of VO2 by Oxygen Nonstoichiometry: Insights from First-Principles Calculations, RSC Adv. 6, 73070 (2016).
- M. E. McGahay, S. V. Khare, and D. Gall, Metal-Insulator Transitions in Epitaxial Rocksalt-Structure Cr1-x/2N1-xOx (001), Phys. Rev. B 102, 235102 (2020).
- Q. Xia, M. D. Pickett, J. J. Yang et al., Two- and Three-Terminal Resistive Switches: Nanometer-Scale Memristors and Memistors, Adv. Funct. Mater. 21, 2660 (2011).
- S. Kaeriyama, T. Sakamoto, H. Sunamura et al., A Nonvolatile Programmable Solid-Electrolyte Nanometer Switch, IEEE J. Solid-State Circuits 40, 168 (2005).
- Q. Wang, Y. Itoh, T. Hasegawa et al., Nonvolatile Three-Terminal Operation Based on Oxygen Vacancy Drift in a Pt/Ta2O5-x/Pt, Pt structure, Appl. Phys. Lett. 102, 233508 (2013).
- P. Balakrishna Pillai and M. M. De Souza, Nanotonics-Based Three-Terminal Synaptic Device Using Zinc Oxide, ACS Appl. Mater. Interfaces 9, 1609 (2017).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				
 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					