PEREKLYuChENIE ZAKRYTOGO MEMRISTORA NA PODVIZhNYKh VAKANSIYaKh V MATERIALE S LINEYNOY ZAVISIMOST'Yu UDEL'NOGO SOPROTIVLENIYa OT IKh KONTsENTRATsII
- Authors: Boylo I.V1, Metlov K.L1
-
Affiliations:
- Issue: Vol 168, No 4 (2025)
- Pages: 569-575
- Section: ELECTRONIC PROPERTIES OF SOLIDS
- URL: https://journal-vniispk.ru/0044-4510/article/view/317108
- DOI: https://doi.org/10.7868/S3034641X25100134
- ID: 317108
Cite item
Abstract
References
- L. Chua, Memristor – the Missing Circuit Element, IEEE Trans. Circuit Theory 18, 507 (1971).
- L. Chua and S. M. Kang, Memristive Devices and Systems, Proc. IEEE 64, 209 (1976).
- D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The Missing Memristor Found, Nature 453, 80 (2008).
- W. Rainer and A. Masakazu, Nanotonics-Based Resistive Switching Memories, Nat. Mater. 6, 833 (2007).
- A. Sawa, Resistive Switching in Transition Metal Oxides, Mater. Today 11, 28 (2008).
- B. Bryant, Ch. Renner, Y. Tokunaga et al., Imaging Oxygen Defects and Their Motion at a Manganite Surface, Nat. Commun. 2, 212 (2011).
- Y. Lide, I. Sampo, and v. D. Sebastian, Direct Observation of Oxygen Vacancy-Driven Structural and Resistive Phase Transitions in La2/3Sr1/3MnO3, Nat. Commun. 8, 14544 (2017).
- N. V. Agudov, A. V. Safonov, A. V. Krichigin et al., Nonstationary Distributions and Relaxation Times in a Stochastic Model of Memristor, J. Stat. Mech. 2020, 024003 (2020).
- N. Agudov, A. Dubkov, A. Safonov et al., Stochastic Model of Memristor Based on the Length of Conductive Region, Chaos Soliton Fract. 150, 111131 (2021).
- J. B. Roldán, E. Miranda, D. Maldonado et al., Variability in Resistive Memories, Adv. Intell. Syst. 5, 2200338 (2023).
- I. V. Boylo and K. L. Metlov, Nonlinear Effects in Memristors with Mobile Vacancies, R. Soc. Open Sci. 8, 210677 (2021).
- И. В. Бойло, К. Л. Метлов, Частотная зависимость гистеренка движения вакансий в закрытом мемристоре на основе точно решаемой модели управляемой нелинейной диффузии, ЖЭТФ 166, 858 (2024).
- W. Zhang, A. Thiess, P. Zalden et al., Role of Vacancies in Metal-Insulator Transitions of Crystalline Phase-Change Materials, Nat. Mater. 11, 952 (2012).
- L. Wang, S. Dash, L. Chang et al., Oxygen Vacancy Induced Room-Temperature Metal-Insulator Transition in Nickelate Films and Its Potential Application in Photovoltaics, ACS Appl. Mater. Interfaces 8, 9769 (2016).
- L. Chen, X. Wang, D. Wan et al., Tuning the Phase Transition Temperature, Electrical and Optical Properties of VO2 by Oxygen Nonstoichiometry: Insights from First-Principles Calculations, RSC Adv. 6, 73070 (2016).
- M. E. McGahay, S. V. Khare, and D. Gall, Metal-Insulator Transitions in Epitaxial Rocksalt-Structure Cr1-x/2N1-xOx (001), Phys. Rev. B 102, 235102 (2020).
- Q. Xia, M. D. Pickett, J. J. Yang et al., Two- and Three-Terminal Resistive Switches: Nanometer-Scale Memristors and Memistors, Adv. Funct. Mater. 21, 2660 (2011).
- S. Kaeriyama, T. Sakamoto, H. Sunamura et al., A Nonvolatile Programmable Solid-Electrolyte Nanometer Switch, IEEE J. Solid-State Circuits 40, 168 (2005).
- Q. Wang, Y. Itoh, T. Hasegawa et al., Nonvolatile Three-Terminal Operation Based on Oxygen Vacancy Drift in a Pt/Ta2O5-x/Pt, Pt structure, Appl. Phys. Lett. 102, 233508 (2013).
- P. Balakrishna Pillai and M. M. De Souza, Nanotonics-Based Three-Terminal Synaptic Device Using Zinc Oxide, ACS Appl. Mater. Interfaces 9, 1609 (2017).
Supplementary files
