УРАВНЕНИЕ ЭВОЛЮЦИИ ЭЛЕКТРИЧЕСКОЙ ПОЛЯРИЗАЦИИ МУЛЬТИФЕРРОИКОВ, ПРОПОРЦИОНАЛЬНОЙ ВЕКТОРНОМУ ПРОИЗВЕДЕНИЮ СПИНОВ ИОНОВ ЯЧЕЙКИ, ПОД ВЛИЯНИЕМ ГАМИЛЬТОНИАНА ГЕЙЗЕНБЕРГА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Получено уравнение эволюции поляризации (плотности электрического дипольного момента) для мультиферроиков II типа, в которых поляризация пропорциональна векторному произведению спинов ионов ячейки. Рассмотрен режим, в котором основным механизмом эволюции является обменное кулоновское взаимодействие, моделируемое гамильтонианом Гейзенберга. Полученное уравнение эволюции поляризации содержит плотность спина и плотность нематического тензора, возникающего как антикоммутатор спинов для частиц с S = 1 и более (для частиц со спином S = 1/2 он вырождается в концентрацию частиц). Также для построения замкнутой модели эволюции спина и поляризации в мультиферроиках получены уравнения для упомянутых выше физических величин. Приведено обоснование спин-токовой модели с помощью уравнения баланса импульса и уравнения эволюции спина, выведенных из микроскопического многочастичного уравнения Паули с учетом спин-орбитального взаимодействия. Для анализа механизма формирования электрического дипольного момента, пропорционального векторному произведению спинов магнитных ионов, использована спин-токовая модель, в рамках которой получена связь коэффициента пропорциональности с обменным интегралом. В работе использовано приближение среднего поля, когда многочастичная волновая функция системы ионов аппроксимируется произведением одночастичных функций.

Об авторах

П. А. Андреев

Московский государственный университет им. М.В. Ломоносова, физический факультет

Email: trukhanova@physics.msu.ru
Россия, 119991, Москва

М. И. Труханова

Московский государственный университет им. М.В. Ломоносова, физический факультет; Институт проблем безопасного развития атомной энергетики Российской академии наук

Автор, ответственный за переписку.
Email: trukhanova@physics.msu.ru
Россия, 119991, Москва; 115191, Москва;

Список литературы

  1. А.П. Пятаков, А.К. Звездин, Магнитоэлектрические материалы и мультиферроики, УФН 182, 593 (2012), doi: 10.3367/UFNr.0182. 201206b.0593 [A.P. Pyatakov and A.K. Zvezdin, Magnetoelectric and Multiferroic Media, Phys. Usp. 55, 557 (2012), doi: 10.3367/UFNe.0182.201206b.0593].
  2. Y. Tokura, S. Seki, and N. Nagaosa, Multiferroics of Spin Origin, Rep.Prog.Phys. 77, 076501 (2014), doi: 10.1088/0034-4885/77/7/076501.
  3. H. Katsura, N. Nagaosa, and A.V. Balatsky, Spin Current and Magnetoelectric Effect in Noncollinear Magnets, Phys.Rev. Lett. 95, 057205 (2005), doi: 10.1103/PhysRevLett.95.057205.
  4. M. Mostovoy, Ferroelectricity in Spiral Magnets, Phys.Rev. Lett. 96, 067601 (2006), doi: 10.1103/PhysRevLett.96.067601.
  5. L. S. Kuz’menkov and S.G. Maksimov, Quantum Hydrodynamics of Particle Systems with Coulomb Interaction and Quantum Bohm Potential, Theor. Mat.Phys. 118, 227 (1999).
  6. L. S. Kuz’menkov, S.G. Maksimov, and V.V. Fedoseev, Microscopic Quantum Hydrodynamics of Systems of Fermions: Part I, Theor.Mat.Phys. 126, 110 (2001).
  7. P.A. Andreev, I.N. Mosaki, and M. I. Trukhanova, Quantum Hydrodynamics of the Spinor Bose – Еinstein Condensate at Non-Zero Temperatures, Phys. Fluids 33, 067108 (2021), doi: 10.1063/5.0053035.
  8. P. Andreev, Measuring the Coupling Constant of Polarized Fermions via Sound Wave Spectra, Theor.Mat.Phys. 213, 1762 (2022), doi: 10.1134/S0040577922120091.
  9. T. Koide, Spin-Electromagnetic Hydrodynamics and Magnetization Induced by Spin-Magnetic Interaction, Phys.Rev.C 87, 034902 (2013).
  10. А. Ахиезер, В. Барьяхтар, С. Пелетминский, Спиновые волны, Наука, Москва (1967).
  11. Y. Kawaguchi and M. Ueda, Theory of Spin-2 Bose – Einstein Condensates: Spin Correlations, Magnetic Response, and Excitation Spectra, Phys. Rep. 520, 253 (2012).
  12. D.M. Stamper-Kurn and M. Ueda, Spinor Bose – Einstein Condensates, Rev.Mod.Phys. 85, 1191 (2013).
  13. M. I. Trukhanova and P. Andreev, A New Microscopic Representation of the Spin Dynamics in Quantum Systems with the Coulomb Exchange Interactions, Moscow University Physics Bulletin, 79, 232 (2024), doi: 10.3103/S0027134924700255, arXiv:2305.03826.
  14. J. Hu, Microscopic Origin of Magnetoelectric Coupling in Noncollinear Multiferroics, Phys.Rev. Lett. 100, 077202 (2008), doi: 10.1103/PhysRevLett.100.077202.
  15. V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii, Vol. 4, Quantum Electrodynamics, Butterworth –Heinemann (1982).
  16. П.А. Андреев, М.И. Труханова, Квантовогидродинамическое представление обменного взаимодействия в теории описания магнитоупорядоченных сред, Вестник Моск. унив., сер. 3, физика, астрономия 78(4), 2340103 (2023), doi: 10.55959/MSU0579-9392.78.2340103.
  17. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика, т. 9, Статистическая физика, ч. 2, Теория конденсированного состояния, Физматлит, Москва (2001).
  18. Д.И. Хомский, Мультиферроики и не только: электрические свойства различных магнитных текстур, ЖЭТФ 159, 581 (2021), doi: 10.31857/S0044451021040015 [D. I. Khomskii, Multiferroics and Beyond: Electric Properties of Different Magnetic Textures, JETP 132, 482 (2021)].
  19. S. Dong, J.-M. Liu, S.-W. Cheong, and Z. Ren, Multiferroic Materials and Magnetoelectric Physics: Symmetry, Entanglement, Excitation, and Topology, Adv.Phys. 64, 519 (2015), doi: 10.1080/00018732.2015.1114338.
  20. T. Goto, T. Kimura, G. Lawes, A. Ramirez, and Y. Tokura, Ferroelectricity and Giant Magnetocapacitance in Perovskite Rare-Earth Manganites, Phys.Rev. Lett. 92, 257201 (2004).
  21. A. Munoz, J. Alonso, M.T. Casais, M. J. MartnezLope, J. L. Martinez, and M.T. Fernandez-Diaz, The Magnetic Structure of YMnO3 Perovskite Revisited, J.Phys.: Condens.Matter 14, 3285 (2002).
  22. V.Yu. Pomjakushin, M. Kenzelmann, A. Donni, A.B. Harris, T. Nakajima, S. Mitsuda, M. Tachibana, L. Keller, J. Mesot, and H. Kitazawa, Evidence for Large Electric Polarization from Collinear Magnetism in TmMnO3, New J.Phys. 11, 043019 (2009), doi: 10.1088/1367-2630/11/4/043019.
  23. H. Kimura, Y. Sakamoto, M. Fukunaga, H. Hiraka, and Y. Noda, Control of Magnetic Interaction and Ferroelectricity by Nonmagnetic Ga Substitution in Multiferroic YMn2O5, Phys. Rev.B 87, 104414 (2013), https://doi.org/10.1103/ PhysRevB.87.104414.
  24. P.A. Andreev and L. S. Kuz’menkov, On the Equation of State for the “Thermal” Part of the Spin Current: The Pauli Principle Contribution in the Spin Wave Spectrum in a Cold Fermion System, Prog.Theor.Exp.Phys. 2019, 053J01 (2019), doi: 10.1093/ptep/ptz029.
  25. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика, т. 3, Квантовая механика. Нерелятивистская теория, Наука, Москва (1974).
  26. I.A. Sergienko, C. Sen, and E. Dagotto, Ferroelectricity in the Magnetic E-Phase of Orthorhombic Perovskites, Phys.Rev. Lett. 97, 227204 (2006), doi: 10.1103/PhysRevLett.97.227204.
  27. P.A. Andreev, Extended Hydrodynamics of Degenerate Partially Spin Polarized Fermions with Short-Range Interaction up to the Third Order by Interaction Radius Approximation, Laser Phys. 31, 045501 (2021), https:// doi.org/10.1088/15556611/ abe717.
  28. A. S. Moskvin and S.-L. Drechsler, Microscopic Mechanisms of Spin-Dependent Electric Polarization in 3d Oxides, Eur.Phys. J.B 71, 331 (2009), doi: 10.1140/epjb/e2009-00264-6.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».