POLARIZATION CHARACTERISTICS OF ELECTRODYNAMIC STARK EFFECT SPECTRA
- 作者: Demura A.V1, Leont'ev D.S1, Lisitsa V.S1,2,3
-
隶属关系:
- National Research Centre Kurchatov institute
- National Research University MPTI
- National Research Nuclear University MEPI
- 期: 卷 165, 编号 3 (2024)
- 页面: 341-354
- 栏目: Articles
- URL: https://journal-vniispk.ru/0044-4510/article/view/256493
- DOI: https://doi.org/10.31857/S0044451024030040
- ID: 256493
如何引用文章
详细
The detailed study of physical processes responsible for the hydrogen atom spectra under its motion transverse to the strong magnetic field – due to electrodynamic Stark effect, known also as MSE (Motional Stark Effect) – is performed. The formation mechanisms of excited hydrogen levels population due to collisions with protons of plasma are investigated. The experimental and theoretical data on the total and partial excitation cross sections along with parabolic quantum numbers in the laboratory
frame of moving atom are confronted. The universal approach for the calculations of cross sections in the basis of the parabolic wave functions with an account of their adiabatic suppression in the low energy range of collisions and selective in terms of the parabolic quantum numbers is proposed. The method developed is applied for the construction of the collisional-radiative kinetic model for the partial populations of the excited Stark sublevels calculations taking into account the ionization due to collisions with protons. The sources of the thermodynamically nonequilibrium origin of the Stark sublevel populations in the electrodynamic Stark effect are revealed in the wide diapason of the plasma density variation. The intensities of π- and σ Stark components of Hα line versus beam energy, magnetic field and plasma density are calculated. The polarization characteristics of MSE spectra of Hα line are calculated in the magnetically confined thermonuclear plasma. The obtained results are in the reasonable agreement with the literature data. The developed method is of interest as from the general physical point of view, as for the MSE-spectroscopy of tokamaks and in the other experimental conditions.
作者简介
A. Demura
National Research Centre Kurchatov institute
Email: demura45@gmail.com
俄罗斯联邦, 123182, Moscow
D. Leont'ev
National Research Centre Kurchatov institute
Email: demura45@gmail.com
俄罗斯联邦, 123182, Moscow
V. Lisitsa
National Research Centre Kurchatov institute; National Research University MPTI; National Research Nuclear University MEPI
编辑信件的主要联系方式.
Email: demura45@gmail.com
俄罗斯联邦, 123182, Moscow; 141701, Dolgoprudny, Moscow region; 115409, Moscow
参考
- Yu. I. Galushkin, Soviet Astronomy AJ 14, 301 (1970).
- F. M. Levinton, R. J. Fonck, G. M. Gammel et al., Phys. Rev. Lett. 63, 2060 (1989).
- В. А. Крупин, С. Н. Иванов, А. А. Медведев и др., Препринт ИАЭ–5940/7 (1995).
- H. Y.-H. Yuh, PhD Thesis, MIT, Cambridge (2005).
- R. Reimer, PhD Thesis, Universitat Greifswald, Greifswald (2016).
- A. Thorman, PhD Thesis, The Australian National University, Canberra (2018).
- F. M. Levinton and H. Yuh, Rev. Sci. Instrum. 79, 10F522 (2008).
- M. F. Gu, C. T. Holcomb, R. J. Jayakuma et al., J. Phys. B: Atom. Mol. Opt. Phys. 41, 095701 (2008). 4 ЖЭТФ, вып. 3
- W. Mandl, R. C. Wolf, M. G. von Hellermann et al., Plasma Phys. Control. Fusion 35, 1373 (1993).
- N. A. Pablant, K. H. Burrell, R. J. Groebner et al., Rev. Sci. Instrum. 79, 10F517 (2008).
- O. Marchuk, Yu. Ralchenko, R. K. Janev et al., J. Phys. B: Atom. Mol. Opt. Phys. 43, 011002 (2010).
- R. Reimer, A. Dinklage, J. Geiger et al., ASDEX Upgrade and Wendelstein 7-X Teams, Contrib. Plasma Phys. 50, 731 (2010).
- E. Delabie, M. Brix, C. Giroud et al., Plasma Phys. Control. Fusion 52 125008 (2010).
- A. Dinklage, R. Reimer, R. Wolf, Wendelstein 7-X Team, M. Reich, and ASDEX Upgrade Team, Fusion Sci. Technol. 59, 406 (2011).
- R. Reimer, A. Dinklage, R. Fischer et al., and ASDEX Upgrade, Rev. Sci. Instrum. 84, 113503 (2013).
- R. C. Wolf, A. Bock, O. P. Ford et al., J. Instrum. 10, P1008 (2015).
- Yu. Ralchenko, O. Marchuk, W. Biel et al., Rev. Sci. Instrum. 83, 10D504 (2012).
- O. Marchuk, Yu. Ralchenko, and D. R. Schultz, Plasma Phys. Control. Fusion 54, 095010 (2012).
- M. von Hellermann, M. de Bock, O. Marchuk et al., Atoms 7, 30 (2019).
- O. Marchuk, D. R. Schultz, and Yu. Ralchenko, Atoms 8, 8 (2020).
- И. И. Собельман, Введение в теорию атомных спектров, ГИФМЛ, Москва (1963).
- J. T. Park, J. E. Aldag, J. M. George et al., Phys. Rev. A 14, 608 (1976).
- D. Rapp and D. Dinwiddie, Convergence of the Hydrogenic Expansion in H+–H Scattering, J. Chem. Phys. 57, 4919 (1972).
- D. R. Bates and G. Griffing, Proc. Phys. Soc. A London 66, 64 (1953).
- Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, т. III, Физматлит, Москва (2002).
- И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, Наука, Москва (1971).
- Г. Бете, Э. Солпитер, Квантовая механика атомов с одним и двумя электронами, ГИФМЛ, Москва (1960).
- I.Y. Skobelev and A.V. Vinogradov, J. Phys. B: Atom. Mol. Phys. 11, 2899 (1978).
- А. В. Виноградов, И. Ю. Скобелев, А. М. Урнов и др., Труды ФИАН 119, 120 (1980).
- А. В. Виноградов, Труды ФИАН 51, 44 (1970).
- R. J. Glauber, High Energy Collision Theory, in Lectures in Theoretical Physics, Vol. 1, Interscience, New York (1959), p. 315.
- V. Franco and B. K. Thomas, Phys. Rev. A 4, 945 (1971).
- R. K. Janev, D. Reiter, and U. Samm, Collision Processes in Low-Temperature Hydrogen Plasmas, Forschungszentrum Ju¨lich (2003).
- R. K. Janev and J. J. Smith, Cross Sections for Collisions Processes of Hydrogen Atoms with Electrons, Protons and Multiply Charged Ions, Suppl. Nucl. Fusion 4, IAEA, Vienna (1993).
- R. E. Olson, J. Phys. B 13, 483 (1980).
- R. J. Damburg and V. V. Kolosov, J. Phys. B: Atom. Mol. Phys. 12, 2637 (1979).
- P. A. Braun and E. A. Solov’ev, J. Phys. B: Atom. Mol. Phys. 17, L211 (1984).
补充文件
