Organic Inhibitors of Metal Corrosion in Acid Solutions. II. Ways of Increasing the Protective Action and Main Groups of Compounds

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Current approaches to creating mixed inhibitors of metal corrosion in acid solutions and possible pathways of their action on the corrosion process are reviewed. Quantitative approaches to assessing the mutual effect of the components of mixed inhibitors are analyzed, and criteria for the synergism of their action are discussed. The high efficiency of ternary mixed inhibitors based on triazole derivatives in the protection of different steels in high-temperature acid solutions (t = 100–180°C) and solutions of acid mixtures containing Fe(III) salts is shown. Important practical advantages and disadvantages of the different groups of inhibitors of metal corrosion in acidic media are discussed. Data on protecting metals in acidic media with so-called green inhibitors are summarized, and the prospects and discrepancies associated with their practical application are discussed. The need to search for technologies allowing the use of inhibited acid solutions that meet the environmental requirements of current production while simultaneously allowing for the hazard of solutions of the acids is shown.

Sobre autores

Ya. Avdeev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
119071, Moscow, Russia

Yu. Kuznetsov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: avdeevavdeev@mail.ru
119071, Moscow, Russia

Bibliografia

  1. Авдеев Я.Г., Кузнецов Ю.И. // Журн. физ. химии. 2023. Т. 97. № 3. С. 1–17. https://doi.org/10.31857/S0044453723030056.
  2. Schmitt G. // Br. Corros. J. 1984. V. 19. № 4. P. 165. https://doi.org/10.1179/000705984798273100
  3. Finšgar M., Jackson J. // Corros. Sci. 2014. V. 86. P. 17. https://doi.org/10.1016/j.corsci.2014.04.044
  4. Umoren S.A., Solomon M.M. // J. Ind. Eng. Chem. 2015. V. 21. P. 81. https://doi.org/10.1016/j.jiec.2014.09.033
  5. Кузнецов Ю.И. // Успехи химии. 2004. Т. 73. № 1. С. 79.
  6. Umoren S.A., Solomon M.M. // J. Environ. Chem. Eng. 2017. V. 5. № 1. P. 246. https://doi.org/10.1016/j.jece.2016.12.001
  7. Murakawa T., Nagaura S., Hackerman N. // Corros. Sci. 1967. V. 7. № 2. P. 79. https://doi.org/10.1016/S0010-938X(67)80105-7
  8. Aramaki K., Hackerman N. // J. Electrochem. Soc. 1969. V. 116. № 5. P. 568. https://doi.org/10.1149/1.2411965
  9. Лучкин А.Ю., Гончарова О.А., Андреев Н.Н. // Коррозия: материалы, защита. 2021. № 1. С. 27. https://doi.org/10.31044/1813-7016-2021-0-1-27-32
  10. Экилик В.В., Экилик Г.Н. // Защита металлов. 1998. Т. 34. № 2. С. 162.
  11. Avdeev Ya.G., Kuznetsov Yu.I., Buryak A.K. // Corros. Sci. 2013. V. 69. P. 50. https://doi.org/10.1016/j.corsci.2012.11.016
  12. Подобаев Н.И., Авдеев Я.Г. // Защита металлов. 2001. Т. 37. № 1. С. 19.
  13. Avdeev Ya.G., Tyurina M.V., Kuznetsov Yu.I. // Int. J. Corros. Scale Inhib. 2014. V. 3. № 4. P. 246. https://doi.org/10.17675/2305-6894-2014-3-4-246-253
  14. Berezhnaya A.G., Shayea Gh.A.H., Chernyavina V.V. // Ibid. 2017. V. 6. № 4. P. 372. https://doi.org/10.17675/2305-6894-2017-6-4-2
  15. Berezhnaya A.G., Khudoleeva E.S., Chernyavina V.V. // Ibid. 2021. V. 10. № 2. P. 649. https://doi.org/10.17675/2305-6894-2021-10-2-11
  16. Berezhnaya A.G., Chernyavina V.V., Krotkii I.I. // Ibid. 2022. V. 11. № 2. P. 831. https://doi.org/10.17675/2305-6894-2022-11-2-25
  17. Авдеев Я.Г., Лучкин А.Ю., Тюрина М.В., Кузнецов Ю.И. // Коррозия: материалы, защита. 2015. № 1. С. 23.
  18. Авдеев Я.Г., Тюрина М.В., Кузнецов Ю.И. и др. // Коррозия: материалы, защита. 2013. № 6. С. 17.
  19. Avdeev Ya.G., Kuznetsov Yu.I. // Int. J. Corros. Scale Inhib. 2021. V. 10. № 3. P. 1069. https://doi.org/10.17675/2305-6894-2021-10-3-15
  20. Bayol E., Kayakırılmaz K., Erbil M. // Mater. Chem. Phys. 2007. V. 104. № 1. P. 74. doi.org/.https://doi.org/10.1016/j.matchemphys.2007.02.073
  21. Решетников С.М. Ингибиторы кислотной коррозии металлов. Л.: Химия, 1986. 144 с.
  22. Антропов Л.И., Макушин Е.М., Панасенко В.Ф. Ингибиторы коррозии металлов. Киев: Технiка, 1981. 183 с.
  23. Авдеев Я.Г., Макарычев Ю.Б., Кузнецов Д.С., Казанский Л.П. // Коррозия: материалы, защита. 2018. № 9. С. 22. https://doi.org/10.31044/1813-7016-2018-0-9-22-29
  24. Avdeev Ya.G., Kuznetsov D.S., Tyurina M.V. et al. // Int. J. Corros. Scale Inhib. 2017. V. 6. № 2. P. 180. https://doi.org/10.17675/2305-6894-2017-6-2-7
  25. Avdeev Ya.G., Kuznetsov D.S., Tyurina M.V. et al. // Ibid. 2017. V. 6. № 1. P. 47. https://doi.org/10.17675/2305-6894-2017-6-1-4
  26. Avdeev Ya.G. // Int. J. Corros. Scale Inhib. 2019. V. 8. № 4. P. 760. https://doi.org/10.17675/2305-6894-2019-8-4-1
  27. Подобаев Н.И., Авдеев Я.Г. // Защита металлов. 2004. Т. 40. № 1. С. 11.
  28. Авдеев Я.Г., Кузнецов Ю.И. // Успехи химии. 2012. Т. 81. № 12. С. 1133.
  29. Авдеев Я.Г. // Коррозия: материалы, защита. 2014. № 6. С. 27.
  30. Shetty P. // Chem. Eng. Commun. 2020. V. 207. № 7. P. 985. https://doi.org/10.1080/00986445.2019.1630387
  31. Verma C., Quraishi M.A. // Coord. Chem. Rev. 2021. V. 446. 214105. https://doi.org/10.1016/j.ccr.2021.214105
  32. Barmatov E., Hughes T. // Mater. Chem. Phys. 2021. V. 257. 123758. https://doi.org/10.1016/j.matchemphys.2020.123758
  33. Loto R.T., Loto C.A., Popoola A.P.I. // J. Mater. Environ. Sci. 2012. V. 3. № 5. P. 885.
  34. Chauhan D.S., Singh P., Quraishi M.A. // Mol. Liq. 2020. V. 320. Part A. 114387. https://doi.org/10.1016/j.molliq.2020.114387
  35. Verma C., Quraishi M.A., Ebenso E.E. // Surf. Interfaces. 2020. V. 21. 100634. https://doi.org/10.1016/j.surfin.2020.100634
  36. Verma C., Rhee K.Y., Quraishi M.A., Ebenso E.E. // J. Taiwan Inst. Chem. Eng. 2020. V. 117. P. 265. https://doi.org/10.1016/j.jtice.2020.12.011
  37. Rasheeda K., Alva V.D.P., Krishnaprasad P.A., Samshuddin S. // Int. J. Corros. Scale Inhib. 2018. V. 7. № 1. P. 48. https://doi.org/10.17675/2305-6894-2018-7-1-5
  38. Chauhan D.S., Quraishi M.A., Nik W.B.W., Srivastava V. // Mol. Liq. 2021. V. 321. 114747. https://doi.org/10.1016/j.molliq.2020.114747
  39. Verma C., Abdellattif M.H., Alfantazi A., Quraishi M.A. // Ibid. 2021. V. 340. 117211. https://doi.org/10.1016/j.molliq.2021.117211
  40. Avdeev Ya.G. // Int. J. Corros. Scale Inhib. 2018. V. 7. № 4. P. 460. https://doi.org/10.17675/2305-6894-2018-7-4-1
  41. Mishra A., Aslam J., Verma C. et al. // J. Taiwan Inst. Chem. Eng. 2020. V. 114. P. 341. https://doi.org/10.1016/j.jtice.2020.08.034
  42. Goni L.K.M.O., Jafar Mazumder M.A., Quraishi M.A., Rahman M.M. // Chem. Asian. J. 2021. V. 16. P. 1–42. https://doi.org/10.1002/asia.202100201
  43. Quraishi M.A., Chauhan D.S., Saji V.S. / In Heterocyclic Organic Corros. Inhib. / Eds. M.A. Quraishi, D.S. Chauhan and V.S. Saji. Elsevier Inc. All Rights Reserved. 2020. P. 87. https://doi.org/10.1016/B978-0-12-818558-2.00004-7.
  44. Phadke Swathi N., Alva V.D.P., Samshuddin S. // J. Bio. Tribo. Corros. 2017. V. 3. P. 42. https://doi.org/10.1007/s40735-017-0102-3
  45. Salim R., Ech-chihbi E., Oudda H. et al. // Ibid. 2019. V. 5. P. 14. https://doi.org/10.1007/s40735-018-0207-3
  46. Merimi I., Touzani R., Aouniti A. et al. // Int. J. Corros. Scale Inhib. 2020. V. 9. № 4. P. 1237. https://doi.org/10.17675/2305-6894-2020-9-4-4
  47. Verma C., Ebenso E.E., Quraishi M.A., Rhee K.Y. // Mol. Liq. 2021. V. 334. 116441. https://doi.org/10.1016/j.molliq.2021.116441
  48. Verma C., Haque J., Quraishi M.A., Ebenso E.E. // Ibid. 2019. V. 275. P. 18. https://doi.org/10.1016/j.molliq.2018.11.040
  49. Avdeev Ya.G., Kuznetsov Yu.I. // Int. J. Corros. Scale Inhib. 2021. V. 10. № 2. P. 480. https://doi.org/10.17675/2305-6894-2020-10-2-2
  50. Quraishi M.A., Chauhan D.S., Saji V.S. / In Heterocyclic Organic Corros. Inhib. / Eds. M.A. Quraishi, D.S. Chauhan and V.S. Saji. Elsevier Inc. All Rights Reserved. 2020. P. 133. https://doi.org/10.1016/B978-0-12-818558-2.00005-9
  51. Obot I.B., Onyeachu I.B., Umoren S.A. et al. // J. Petrol. Sci. Eng. 2020. V. 185. 106469. https://doi.org/10.1016/j.petrol.2019.106469
  52. Quraishi M.A., Chauhan D.S., Saji V.S. / In Heterocyclic Organic Corros. Inhib. / Eds. M. A. Quraishi, D.S. Chauhan and V.S. Saji. Elsevier Inc. All Rights Reserved. 2020. P. 159. https://doi.org/10.1016/B978-0-12-818558-2.00006-0.
  53. Quraishi M.A., Chauhan D.S., Saji V.S. // Ibid. 2020. P. 195. https://doi.org/10.1016/B978-0-12-818558-2.00007-2
  54. Quraishi M.A., Chauhan D.S., Saji V.S. // Ibid. 2020. P. 211. https://doi.org/10.1016/B978-0-12-818558-2.00008-4
  55. Verma C., Ebenso E.E., Quraishi M.A. // Mol. Liq. 2017. V. 233. P. 403. https://doi.org/10.1016/j.molliq.2017.02.111
  56. Kobzar Ya.L., Fatyeyeva K. // Chem. Eng. J. 2021. V. 425. 131480. https://doi.org/10.1016/j.cej.2021.131480
  57. Deyab M.A. // Mol. Liq. 2020. V. 309. 113107. https://doi.org/10.1016/j.molliq.2020.113107
  58. Ardakani E.K., Kowsari E., Ehsani A., Ramakrishna S. // Microchemical J., 2021. V. 165. 106049. https://doi.org/10.1016/j.microc.2021.106049
  59. El Ibrahimi B., Jmiai A., Bazzi L., El Issami S. // Arab. J. Chem. 2020. V. 13. № 1. P. 740. https://doi.org/10.1016/j.arabjc.2017.07.013
  60. Hamadi L., Mansouri S., Oulmi K., Kareche A. // Egypt. J. Petrol. 2018. V. 27. № 4. P. 1157. https://doi.org/10.1016/j.ejpe.2018.04.004
  61. Umoren S.A., Solomon M.M. // Open Mater. Sci. J. 2014. V. 8. P. 39. https://doi.org/10.2174/1874088X01408010039
  62. Aljeaban N.A., Goni L.K.M.O., Alharbi B.G. et al. // Int. J. Polym. Sci. 2020. V. 2020. 9512680. https://doi.org/10.1155/2020/9512680
  63. Arthur D.E., Jonathan A., Ameh P.O., Anya C. // Int. J. Ind. Chem. 2013. V. 4. Article 2. https://doi.org/10.1186/2228-5547-4-2
  64. Verma C., Quraishi M.A. // Int. J. Corros. Scale Inhib. 2021. V. 10. № 3. P. 851. https://doi.org/10.17675/2305-6894-2021-10-3-1
  65. Gece G. // Corros. Sci. 2011. V. 53. P. 3873. https://doi.org/10.1016/j.corsci.2011.08.006
  66. Pathak R.K., Mishra P. // Int. J. Sci. Res., 2016. V. 5. № 4. P. 671.
  67. Tanwer S., Shukla S.K. // Current Res. Green Sustainable Chem. 2022. V. 5. 100227. https://doi.org/10.1016/j.crgsc.2021.100227
  68. Baari M.J., Sabandar C.W. // Indones. J. Chem. 2021. V. 21. № 5. P. 1316. https://doi.org/10.22146/ijc.64048
  69. Shamnamol G.K., Sreelakshmi K.P., Ajith G., Jacob J.M. / AIP Conference Proceedings. 2020. V. 2225. 070006. https://doi.org/10.1063/5.0005931
  70. Kamaruzzaman W.M.I.W.M., Nasir N.A.M., Hamidi N.A.S.M. et al. // Arab. J. Chem. 2022. V. 15. 103655. https://doi.org/10.1016/j.arabjc.2021.103655
  71. Xhanari K., Finšgar M., Knez Hrncic M. et al. // RSC Adv. 2017. V. 7. 27299. https://doi.org/10.1039/c7ra03944a
  72. Raja P.B., Sethuraman M.G. // Mater. Lett. 2008. V. 62. P. 113. https://doi.org/10.1016/j.matlet.2007.04.079
  73. Kadhim A., Betti N., Al-Bahrani H.A. et al. // Int. J. Corros. Scale Inhib. 2021. V. 10. № 3. P. 861. https://doi.org/10.17675/2305-6894-2021-10-3-2
  74. Salleh S.Z., Yusoff A.H., Zakaria S.K et al. // J. Clean. Prod. 2021. V. 304. 127030. https://doi.org/10.1016/j.jclepro.2021.127030
  75. Umoren S.A., Solomon M.M., Obot I.B., Sulieman R.K. // J. Ind. Eng. Chem. 2019. V. 76. P. 91. https://doi.org/10.1016/j.jiec.2019.03.057
  76. Shang Z., Zhu J. // J. Mater. Res. Technol. 2021. V. 15. P. 5078. https://doi.org/10.1016/j.jmrt.2021.10.095
  77. Chaubey N., Savita, Qurashi A., Chauhan D.S., Quraishi M.A. // Mol. Liq. 2021. V. 321. 114385. https://doi.org/10.1016/j.molliq.2020.114385
  78. Singh A., Ebenso E.E., Quraishi M.A. // Int. J. Corros. 2012. V. 2012. 897430. https://doi.org/10.1155/2012/897430
  79. Abd-El-Nabey B.A., Abd-El-Khalek D.E., El-Housseiny S., Mohamed M.E. // Int. J. Corros. Scale Inhib. 2020. V. 9. № 4. P. 1287. https://doi.org/10.17675/2305-6894-2020-9-4-7
  80. Badawi A.K., Fahim I.S. // Ibid. 2021. V. 10. № 4. P. 1385. https://doi.org/10.17675/2305-6894-2021-10-4-2
  81. Rajendran S., Srinivasan R., Dorothy R. et al. // Ibid. 2019. V. 8. № 3. P. 437. https://doi.org/10.17675/2305-6894-2019-8-3-1
  82. Chigondo M., Chigondo F. // J. Chem. 2016. V. 2016. 6208937. https://doi.org/10.1155/2016/6208937
  83. Bilgiç S. // Int. J. Corros. Scale Inhib. 2021. V. 10. № 1. P. 145. https://doi.org/10.17675/2305-6894-2021-10-1-9
  84. Bilgiç S. // Ibid. 2022. V. 11. № 1. P. 1–42. https://doi.org/10.17675/2305-6894-2022-11-1-1
  85. Devi N.R., Karthiga N., Keerthana R. et al. // Ibid. 2020. V. 9. № 4. P. 1169. https://doi.org/10.17675/2305-6894-2020-9-4-2
  86. Al-Amiery A.A., Kadhim A., Al-Adili A., Tawfiq Z.H. // Ibid. 2021. V. 10. № 4. P. 1355. https://doi.org/10.17675/2305-6894-2021-10-4-1
  87. Verma C., Ebenso E.E., Quraishi M.A. // Ibid. 2019. V. 8. № 3. P. 512. https://doi.org/10.17675/2305-6894-2019-8-3-3
  88. Wei H., Heidarshenas B., Zhou L. et al. // Mater. Today Sustainability. 2020. V. 10. Р.100044. https://doi.org/10.1016/j.mtsust.2020.100044.
  89. Kesavan D., Gopiraman M., Sulochana N. // Chem. Sci. Rev. Lett. 2012. V. 1. № 1. P. 1–8.
  90. Vaidya N.R., Aklujkar P., Rao A.R. // J. Coat. Technol. Res. 2022. V. 19. P. 223. https://doi.org/10.1007/s11998-021-00510-z
  91. Abdel Hameed R.S., Qureshi M.T., Abdallah M. // Int. J. Corros. Scale Inhib. 2021. V. 10. № 5. P. 68. https://doi.org/10.17675/2305-6894-2021-10-1-4
  92. Quraishi M.A., Chauhan D.S., Saji V.S. / In Heterocyclic Organic Corros. Inhib. / Eds. M.A. Quraishi, D.S. Chauhan and V.S. Saji. Elsevier Inc. All Rights Reserved. 2020. P. 225. https://doi.org/10.1016/B978-0-12-818558-2.00009-6
  93. Khadom A.A., Farhan S.N. // Corros. Rev. 2018. V. 36. № 3. P. 267. https://doi.org/10.1515/corrrev-2017-0104
  94. Fateh A., Aliofkhazraei M., Rezvanian A.R. // Arab. J. Chem. 2020. V. 13. P. 481. https://doi.org/10.1016/j.arabjc.2017.05.021
  95. Antonijevic M.M., Petrovic M.B. // Int. J. Electrochem. Sci. 2008. V. 3. P. 1–28.
  96. Petrović Mihajlović M.B., Antonijević M.M. // Int. J. Electrochem. Sci. 2015. V. 10. P. 1027.
  97. Finšgar M., Milošev I. // Corros. Sci. 2010. V. 52. P. 2737. https://doi.org/10.1016/j.corsci.2010.05.002
  98. Allam N.K., Nazeer A.A., Ashour E.A. // J. Appl. Electrochem. 2009. V. 39. P. 961. https://doi.org/10.1007/s10800-009-9779-4
  99. Xhanari K., Finšgar M. // RSC Adv. 2016. V. 6. 62833. https://doi.org/10.1039/c6ra11818f
  100. Ansari K.R., Chauhan D.S., Singh A., Saji V.S. / In Corrosion Inhibitors in the Oil and Gas Industry / Eds.: V.S. Saji and S.A. Umoren. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. 2020. P. 153–176. https://doi.org/10.1002/9783527822140.ch6.
  101. Singh A., Quraishi M.A. // J. Mater. Environ. Sci. 2015. V. 6. № 1. P. 224.
  102. Askari M., Askari M., Aliofkhazraei M. et al. // Appl. Surf. Sci. Adv. 2021. V. 6. 100128. https://doi.org/10.1016/j.apsadv.2021.100128
  103. Quraishi M.A., Chauhan D.S., Ansari F.A. // Mol. Liq. 2021. V. 329. 115514. https://doi.org/10.1016/j.molliq.2021.115514
  104. Askari M., Aliofkhazraei M., Ghaffari S., Hajizadeh A. // J. Nat. Gas Sci. Eng. 2018. V. 58. P. 92. https://doi.org/10.1016/j.jngse.2018.07.025
  105. Tiu B.D.B., Advincula R.C. // Reactive Function. Polymer. 2015. V. 95. P. 25. https://doi.org/10.1016/j.reactfunctpolym.2015.08.006
  106. Avdeev Ya.G., Kuznetsov Yu.I. // Int. J. Corros. Scale Inhib. 2020. V. 9. № 2. P. 394. https://doi.org/10.17675/2305-6894-2020-9-2-2
  107. Avdeev Ya.G., Kuznetsov Yu.I. // Ibid. 2020. V. 9. № 3. P. 867. https://doi.org/10.17675/2305-6894-2020-9-3-5
  108. Avdeev Ya.G., Kuznetsov Yu.I. // Ibid. 2020. V. 9. № 4. P. 1194. https://doi.org/10.17675/2305-6894-2020-9-4-3
  109. Obot I.B., Meroufel A., Onyeachu I.B. et al. // Mol. Liq. 2019. V. 296. 111760. https://doi.org/10.1016/j.molliq.2019.111760
  110. Goyal M., Kumar S., Bahadur I. et al. // Ibid. 2018. V. 256. P. 565. https://doi.org/10.1016/j.molliq.2018.02.045
  111. Hooshmand Zaferani S., Sharifi M., Zaarei D., Reza Shishesaz M. // J. Environ. Chem. Eng. 2013. V. 1. P. 652. https://doi.org/10.1016/j.jece.2013.09.019
  112. Verma C., Ebenso E.E., Quraishi M.A., Hussain C.M. // Mater. Adv. 2021. V. 2. P. 3806. https://doi.org/10.1039/d0ma00681e
  113. Verma C., Olasunkanmi L.O., Ebenso E.E., Quraishi M.A. // Mol. Liq. 2018. V. 251. P. 100. https://doi.org/10.1016/j.molliq.2017.12.055
  114. Yang H.-M. // Molecules. 2021. V. 26. P. 3473. https://doi.org/10.3390/molecules26113473
  115. Abd El-Maksoud S.A. // Int. J. Electrochem. Sci. 2008. V. 3. P. 528.
  116. Vinutha M.R., Venkatesha T.V. // Port. Electrochimica Acta. 2016. V. 34. № 3. P. 157. https://doi.org/10.4152/pea.201603157

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (66KB)

Declaração de direitos autorais © Я.Г. Авдеев, Ю.И. Кузнецов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».