Конверсия диметилового эфира в низшие олефины на Rh-Mg/НZSM-5: роль Rh как модификатора

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследовано влияние второго модифицирующего металла (Rh) на кислотные и каталитические свойства Mg/НZSM-5 в конверсии диметилового эфира в низшие олефины, изучено состояние активных компонентов (Mg, Rh) на поверхности цеолита. Показано, что введение родия в Mg/НZSM-5 приводит к существенному повышению стабильности работы катализатора при сохранении селективности по низшим олефинам на уровне 75 мас. %. Установлено, что в монометаллическом образце Мg/НZSM-5 на поверхности цеолита формируются различные оксокатионные или оксидные формы магния, а введение родия способствует стабилизации магния преимущественно в форме катионов Mg2+, при этом сила льюисовских кислотных свойств катионов магния снижается, что в совокупности способствует замедлению дезактивации катализатора.

Полный текст

Доступ закрыт

Об авторах

Т. И. Батова

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Автор, ответственный за переписку.
Email: batova.ti@ips.ac.ru
Россия, Москва

Т. К. Обухова

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: batova.ti@ips.ac.ru
Россия, Москва

Н. В. Колесниченко

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: batova.ti@ips.ac.ru
Россия, Москва

М. И. Шилина

Московский государственный университет имени М. В. Ломоносова

Email: batova.ti@ips.ac.ru
Россия, Москва

Список литературы

  1. Хаджиев С.Н., Колесниченко Н.В., Горяинова Т.И. и др. Катализатор и способ синтеза олефинов из диметилового эфира в его присутствии // Патент РФ № 2445158 С2.2012. Бюл. № 8.
  2. Kolesnichenko N.V., Ezhova N.N., Snatenkova Yu.M. // Russ. Chem. Rev. 2020. V. 89. № 2. P. 191. https://doi.org/10.1070/RCR4900 [Колесниченко Н.В., Ежова Н.Н., Снатенкова Ю.М. // Успехи химии. 2020. Т. 89. № 2. С. 191. https://doi.org/10.1070/RCR4900]
  3. Колесникова Е.Е., Обухова Т.К., Колесниченко Н.В. и др. // Нефтехимия. 2018. Т. 58. № 5. С. 573. https://doi.org/10.1134/S0028242118050209 [Kolesnikova E.E., Obukhova T.K., Kolesnichenko N.V. et. al. // Petrol. Chemistry. 2018. V. 58. № 10. P. 863. https:// doi.org/10.1134/S0965544118100201]
  4. Батова Т.И., Обухова Т.К., Колесниченко Н.В. и др. // Нефтехимия. 2019. Т. 59. № 5. С. 569. https://doi.org/10.1134/S0028242119050034 [Batova T.I., Obukhova T.K., Kolesnichenko N.V. et. al. // Ibid. 2019. V. 59. № 9. P. 1017. https://doi.org/10.1134/S0965544119090032]
  5. Schultz H. // Catal. Today. 2010. V. 154. I. 3–4. Р. 183. https://doi.org/10.1016/j.cattod.2010.05.012
  6. Lunsford J.H. // Catal. Today. 2000. V. 63. № 2–4. Р. 165. https://doi.org/10.1016/S0920-5861(00)00456-9
  7. Xu Y., Bao X., Lin L. // J. Catal. 2003. V. 216. № 1–2. Р. 386. https://doi.org/10.1016/S0021–9517(02)00124–0
  8. Ezhova N.N., Kolesnichenko N.V., Batova T.I. // Petrol. Chemistry. 2020. V. 60. № 4. P. 459. https://doi.org/10.1134/S0965544120040064
  9. Kolesnichenko N.V., Khivrich Е.N., Obukhova T.K. et. al. // Microporous Mesoporous Mater. 2020. V. 298. 110087. https://doi.org/10.1016/j.micromeso.2020.110087
  10. Bakare I.A., Muraza O., Sanhoob M.A. et. al. // Fuel. 2018. V. 211. P. 18. https://doi.org/10.1016/j.fuel.2017.08.117
  11. Khanmohammadi M., Amani Sh., Garmarudi A. Bagheri et. al. // Chin. J. Catal. 2016. V. 37. № 3. P. 325. https://doi.org 10.1016/S1872-2067(15)61031-2
  12. Zhang J., Zhu X., Zhang S. et. al. // Catal. Sci. Technol. 2019. V. 9. P. 316. https://doi.org/10.1039/C8CY02189A
  13. Zhang J., Qian W., Kong C. et. al. // ACS Catal. 2015. V. 5. P. 2982. https://doi.org/10.1021/acscatal.5b00192
  14. Zhang J., Zhu X., Wang G. et. al. // Chem. Eng. J. 2017. V. 327. P. 278. https://doi.org/10.1016/j.cej.2017.06.114
  15. Колесниченко Н.В., Колесникова Е.Е., Обухова Т.К. и др. // Нефтехимия. 2018. Т. 58. № 6. С. 665. https://doi.org/10.1134/S0028242118060059 [Kolesnichenko N.V., Kolesnikova E.E., Obukhova T.K. et. al. // Petrol. Chemistry. 2018. V. 58. № 12. P. 1013. https://doi.org/10.1134/S0965544118120058]
  16. Hou Y., Nagamatsu Sh., Asakura K. et. al. // Commun. Chem. 2018. V. 1. P. 41. https://doi.org/10.1038/s42004-018-0044-9
  17. Reule Allen A.C., Semagina N. // ACS Catal. 2016. V 6. № 8. P. 4972. https://doi.org/10.1021/acscatal.6b01464
  18. Martin O., Mondelli C., Curulla-Ferre D. et. al. // ACS Catal. 2015. V. 5. № 9. P. 5607. https://doi.org/10.1039/D0SE01172J
  19. Колесниченко Н.В., Ежова Н.Н., Яшина О.В. // Нефтехимия. 2016. Т. 56. № 6. С. 607. https://doi.org/10.7868/S0028242116060113 [Kolesnichenko N.V., Ezhova N.N., Yashina O.V. // Petrol. Chemistry. 2016. V. 56. № 9. P. 827. https://doi.org/10.1134/S0965544116090115]
  20. Bondarenko G.N., Rodionov A.S., Kolesnichenko N.V., et al. // Catal. Letters. 2021. V. 151. P. 1309. https://doi.org/10.1007/s10562-020-03399-2
  21. Chernyshov A., Veligzhanin A., Zubavichus Y. // Nucl. Instr. Meth. Phys. Res. A. 2009. V. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167
  22. Trofimova N., Veligzhanin A., Murzin V., et al. // Ross. Nanotechnol. 2013. V. 8. P. 396. https://doi.org/10.1134/S1995078013030191
  23. Ravel B., Newville M. // J. Synchrotron. Rad. 2005. V. 12. P. 537 https://doi.org/10.1107/S0909049505012719
  24. Newille M. // Synchrotron. 2001. V. 8. 322. https://doi.org/10.1107/S0909049500016964
  25. Batova T.I., Stashenko A.N., Obukhova T.K., et al. // Micropor. Mesopor. Mater. 2023. T.366.112953. https://doi.org/10.1016/j.micromeso.2023.112953
  26. Kolesnichenko N.V., Batova T.I., Stashenko A.N., et al. // Microporous Mesoporous Mater. 2022. Т. 344. 112239. https://doi.org/10.1016/j.micromeso.2022.112239
  27. Шилина М.И., Обухова Т.К., Батова Т.И. и др. // Журн. физ. химии. 2023. Т. 97. № 7. С. 944. https://doi.org/10.31857/S0044453723070269 [Shilina M.I., Obukhova T.K., Batova T.I., et al. // Russ. J. Phys. Chem. A. 2023. V. 97. № 7. P. 1387. https://doi.org/10.1134/S0036024423070269]
  28. Bulanek R., Voleska I., Ivanova E., et al. // J. Phys. Chem. C. 2009. V. 113. № 25. P. 11066. https://doi.org/10.1021/jp901575p
  29. Sun K., Su W., Fan F., et al. // J. Phys. Chem. A. 2008. V. 112. P. 1352. https://doi.org/10.1021/jp709635f
  30. Voleská I., Nachtigall P., Ivanova E., et al. // Catal. Today. 2015. V. 243. P. 53. https://doi.org/10.1016/j.cattod.2014.07.029
  31. Arean C.O., Nachtigallova D., Nachtigall P., et al. // Phys. Chem. Chem. Phys. 2007. V. 9. P. 1421. https://doi.org/10.1039/b615535a
  32. Davydov A. Molecular Spectroscopy of Oxide Catalyst Surfaces. Chichester. England: John Wiley & Sons Ltd. 2003. 668 p.
  33. Шилина М.И, Удалова О.В., Невская С.М. // Кинетика и катализ. 2013. Т. 54. № 6. С. 731. https://doi.org/10.7868/S0453881113060117 [Shilina M.I., Nevskaya S.M., Udalova O.V. // Kinetics and Catalysis. 2013. V. 54. № 6. P. 691–702. https://doi.org/10.1134/S0023158413060116]
  34. Osuga R., Saikhantsetseg B., Yasuda S., et al. // Chem. Commun. 2020. V. 56. P. 5913. https://doi.org/10.1039/D0CC02284E
  35. Ivanova E., Mihaylov M., Thibault-Starzyk F., et al. // J. Catal. 2005. V. 236. P. 168. https://doi.org/10.1016/j.jcat.2005.09.017
  36. Hadjiivanov K., Ivanova E., Dimitrov L., et al. // J. Molec. Struct. 2003. V. 661–662. P. 459. https://doi.org/10.1016/j.molstruc.2003.09.007
  37. Spoto G., Gribov E.N., Ricchiardi G., et al. // Prog. Surf. Sci. 2004. V. 76. P. 71. https://doi.org/10.1016/j.progsurf.2004.05.014
  38. Larin A.V., Rybakov A.A., Zhidomirov G.M., et al. // J. Catal. 2011. V. 281. P. 212. https://doi.org/10.1016/j.jcat.2011.05.002
  39. Shilina M.I., Rostovshchikova T.N., Nikolaev S.A., et al. // Materials Chemistry and Physics. 2019. V. 223. P. 287. https://doi.org/10.1016/j.matchemphys.2018.11.005
  40. Yarulina I., De Wispelaere K., Bailleul S., et al. // Nature Chem. 2018. V. 10. P. 804. https://doi.org/10.1038/s41557-018-0081-0

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Влияние модифицирования Mg/HZ родием на стабильность работы катализатора (а) и выход целевых продуктов за 4 ч (б) в конверсии ДМЭ в низшие олефины; α – конверсия, С – выход низших олефинов.

Скачать (167KB)
3. Рис. 2. Кривые температурно-программируемой десорбции аммиака для Rh/HZ, Mg/HZ и Rh-Mg/HZ; v – скорость десорбции аммиака.

Скачать (99KB)
4. Рис. 3. XANES- (а) и EXAFS- (б) спектры на К-крае Rh-катализаторов Rh/HZ и Rh-Mg/HZ.

Скачать (138KB)
5. Рис. 4. ИКДО-спектры адсорбированного СО на Mg/HZ (а) и Rh-Mg/HZ (б) при равновесных давлениях 5 (1), 10 торр (2) и после вакуумирования до 0.05 торр (3), k – волновое число.

Скачать (197KB)
6. Рис. 5. Разностные ИКДО-спектры СО, адсорбированного на Mg/HZ и Rh-Mg/HZ, при давлениях 5 (а) и 0.05 торр (б). Спектры* получены путем вычитания из спектров данных образцов (рис. 4, кривые 1 и 3) спектров исходного цеолита HZ.

Скачать (257KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».