KINETICS AND MECHANISM OF COARSENING FOR NANOPARTICLES OF SULFUR AND ALKALINE EARTH METAL SULFATES COPRECIPITATED FROM TRUE POLYSULFIDE SOLUTIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Alkaline-earth metal sulfate nanoparticles (ALMS) and nanocomposites of ALMS with sulfur nanoparticles (nanosulfur) are synthesized from aqueous solutions of polysulfides (ASP) of alka-line-earth metals (AEM) of calcium, strontium, and barium (CaSn, SrSn, BaSn; n>1). AEM ASP are obtained in the aqueous medium at temperatures of 70 and 90°C as a result of the reaction between metal hydroxide and sulfur. It is found that the use of sulfur mechanically activated in the disintegrator for synthesis allows obtaining higher concentrations of AEM ASP in shorter times. To establish possible mechanisms of mechanochemical recrystallization in liquid media, the method of static light scattering is used to determine the kinetics of particle aggregation as a result of reversible aggregation of sulfur and AEM sulfate nanoparticles. It is found that at first particles with sizes about 30 nm are formed, which are enlarged to tens of microns with time. The values of the rate constant of particle aggregation (agglomeration) (Q) increase with the concentration of acids, and their optimal value for the realization of the Q-mechanism is 10%. It is found that applying a surfactant (neonol; concentration 5%) reduces Q by multiple times. It is also found that the value of Q grows with the temperature, and the activation energies of S/MeSO4 particle aggregation processes are determined for the optimum interval 300÷350 K. Practical aspects of the results of the work are considered by the example of using the obtained samples to germinate wheat grains, as well as hydrophobicity of S/MeSO4 samples due to the presence of sulfur in them.

About the authors

F. K. Urakaev

Institute of Geology and Mineralogy named after V. S. Sobolev of the Siberian Branch of RAS

Email: urakaev@igm.nsc.ru
630090, Novosibirsk, Russia

I. A. Massalimov

Ufa University of Science and Technology; Herbicide Technology Institute

450076, Ufa, Russia; 450029, Ufa, Russia

B. S. Akhemetshin

Ufa University of Science and Technology

450076, Ufa, Russia

B. I. Massalimov

P. N. Lebedev Physical Institute

119333, Moscow, Russia

A. N. Husayinov

Ufa University of Science and Technology

450076, Ufa, Russia

M. R. Samsonov

Ufa University of Science and Technology

450076, Ufa, Russia

S. S. Mustafokulov

Ufa University of Science and Technology

450076, Ufa, Russia

References

  1. Массалимов И. А., Самсонов М. Р., Ахметшин Б. С., и др. // Коллоидн. журн. 2018. Т. 80. № 4. С. 424. doi: 10.1134/S0023291218040080 [Massalimov I.A., Samsonov M.R., Akhmetshin B.S., et al. // Colloid J. 2018. V. 80. № 4. P. 407. https://doi.org/10.1134/S1061933X18040087]
  2. Массалимов И.А., Ахметшин Б.С., Массалимов Б.И., Уракаев Ф.Х. // Журн. физ. химии. 2024. Т. 98. № 1. С. 124. doi: 10.31857/S0044453724010179 [Massalimov I.A., Akhmetshin B.S., Massalimov B.I., Urakaev F. Kh. // Russ. J. Phys. Chem. A. 2024. V. 98. № 1. P. 120. https://doi.org/10.1134/S003602442401014X]
  3. Уракаев Ф.Х., Буркитбаев М.М. // Журн.физ.химии. 2023. Т. 97. № 10. С. 1471. doi: 10.31857/S0044453723100254 [Urakaev F. Kh., Burkitbaev M.M. // Russ. J. Phys. Chem. A. 2023. V. 97. № 10. P. 2231. https://doi.org/10.1134/S0036024423100254]
  4. Narayan O.P., Kumar P., Yadav B., et al. // Plant Signal. Behav. 2023. V. 18. № 1. P. e2030082 (11pp). https://doi.org/10.1080/15592324.2022.2030082
  5. Garcia A.A., Druschel G.K. // Geochem Trans. 2014. V. 15. P. e2030082 (11pp). https://doi.org/10.1186/s12932-014-0011-z
  6. Ghotekar S., Pagar T., Pansambal S., Oza R. // Adv. J. Chem. B. 2020. V. 2. № 3. P. 128. https://doi.org/10.22034/ajcb.2020.109501
  7. Jin H., Sun Y., Sun Z., Yang M., Gui R. // Coord. Chem. Rev. 2021. V. 438. P. 213913 (35pp). https://doi.org/10.1016/j.ccr.2021.213913
  8. Samrat K., Chandraprabha M.N., Krishna R.H., et al. // Mater. Technol. 2022. V. 37. № 14. P. 3025. https://doi.org/10.1080/10667857.2022.2115757
  9. Sun Y., Jiang Y., Li Y., et al. // Chem. Sci. 2024. V. 15. № 13. P. 4709. https://doi.org/10.1039/D3SC06122A
  10. Lockhart C.L.F., Hojjatie M.M., Dimitriadis A. Polysulfide compositions and processes for making same: EP 3819282 // Bull. 2021. № 19. P. 13. https://data.epo.org/publication-server/rest/v1.0/publication-dates/20210512/patents/EP3819282NWA1/document.pdf
  11. Chao J.-Y., Yue T.-J., Ren B.-H., et al. // Angew. Chem. Int. Ed. 2022. V. 61. № 16. P. e202115950 (8pp). https://doi.org/10.1002/anie.202115950
  12. Amna R., Alhassan S.M. // ACS Appl. Polym. Mater. 2024. V. 6. № 8. P. 4350. https://doi.org/10.1021/acsapm.4c00272
  13. Ибарра Ф., Мейер К., Штефан Х., Торстен Х. Способ получения наночастиц сульфатов щелочноземельных металлов: Патент RU2338690 // Б.И. 2008. № 32. С. 10. https://patentimages.storage.googleapis.com/1f/4d/bf/f9e0e5d42a5b1d/RU2338690C2.pdf [Ibarra F., Mejer K., Shtefan Kh., Torsten Kh. Method of obtaining nanoparticles of sulphates of alkali earth metals: Patent RU2338690 // Bull. 2008. № 32. P. 10. https://patents.google.com/patent/RU2338690C2/ru]
  14. Prutviraj K. Ramesh T.N. Surfactant mediated synthesis of barium sulfate, strontium sulfate and barium-strontium sulfate nanoparticles // Inor. Nano-Met. Chem. 2019. Vol. 49. № 4. P. 93—99. https://doi.org/10.1080/24701556.2019.1603162
  15. Alhseinat E., Abi J.M., Afra A., et al. // Surfaces and Interfaces. 2021. V. 22. P. 100875 (12pp). https://doi.org/10.1016/j.surfin.2020.100875
  16. Ahmad M.N., Nadeem S., Hassan S.U., et al. // Dig. J. Nanomat. Biostruct. 2021. V. 16. № 4. P. 1557. doi: 10.15251/DJNB.2021.164.1557; https://chalcogen.ro/1557_AhmadMN.pdf
  17. Lu M.Q., Cao J.J., Wang Z.Y., Wang G.Q. // Minerals. 2022. V. 12. № 10. P. 1289 (23pp). https://doi.org/10.3390/min12101289
  18. Tritschler U., Van Driessche A.E.S., Kempter A., et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 13. P. 4083. https://doi.org/10.1002/anie.201409651
  19. Chen S., Jiang Y., Xu Y., et al. // Mater. Res. Express. 2019. V. 6. № 10. P. 1050b8 (9pp). doi: 10.1088/2053-1591/ab4070
  20. Barone A.W., Pringle M., Nguyen D., Dziak R. // Int J Dent Oral Health. 2020. V. 6. № 4. 7pp. https://dx.doi.org/10.16966/2378-7090.325; https://www.sciforschenonline.org/journals/dentistry/article-data/IJDOH325/IJDOH325.pdf
  21. Jia C., Wu L., Chen Q., et al. // CrystEngComm. 2020. V. 22. № 41. P. 6805. https://doi.org/10.1039/D0CE01173H
  22. Burgos-Ruiz M., Pelayo-Punzano G., Ruiz-Agudo E., et al. // Chem. Comm. 2021. V. 59. № 59. P. 7304. https://doi.org/10.1039/D1CC02014E
  23. Jia C.Y., Wu L.C., Fulton J.L., et al. // J. Phys. Chem. C. 2021. V. 125. № 6. P. 3415. https://doi.org/10.1021/acs.jpcc.0c10016
  24. Liu Y., Lu R., He L., et al. // Coatings. 2022. V. 12. № 6. P. 860 (11pp). https://doi.org/10.3390/coatings12060860
  25. Maslyk M., Dallos Z., Koziol M., et al. // Adv. Funct. Mater. 2022. V. 32. № 20. P. 2111852 (11pp). https://doi.org/10.1002/adfm.202111852
  26. Li Y.-F., Ouyang J.-H., Zhou Y., et al. // Mater. Lett. 2008. V. 62. № 29. P. 4417. https://doi.org/10.1016/j.matlet.2008.07.053
  27. Nafi A.W., Taseidifar M., Pashley R.M., Ninham B.W. // Substantia. 2020. V. 4. № 2 (Supl. 1). P. 95. https://doi.org/10.36253/Substantia-1031
  28. Bakhtiar A., Chowdhury E.H. // Asian J. Pharm. Sci. 2021. V. 16. № 2. P. 236. https://doi.org/10.1016/j.ajps.2020.11.002
  29. Lauer A.R., Hellmann R., Montes-Hernandez G., et al. // J. Chem. Phys. 2023. V. 158. № 5. P. 054501 (13pp). https://doi.org/10.1063/5.0136870
  30. Akyol E., Cedimagar M.A. // Cryst. Res. Technol. 2016. V. 51. № 6. P. 393. doi: 10.1002/crat.201600046
  31. El-Ghaffar M.A.A., Abdelwahab N.A., Fekry A.M., et al. // Prog. Org. Coat. 2020. V. 144. P. 105664 (11pp). https://doi.org/10.1016/j.porgcoat.2020.105664
  32. Reissig F., Zarschler K., Hübner R., et al. // Chemistryopen. 2020. V. 9. № 8. P. 797. https://doi.org/10.1002/open.202000126
  33. Longlade J., Delaite C., Schuller A. // Materials Sci. Appl. 2021. V.12. № 1. P. 1. doi: 10.4236/msa.2021.121001; https://www.scirp.org/pdf/msa_2021011411225115.pdf
  34. Fang L., Sun Q., Duan Y.-H., et al. // Front. Chem. Sci. Eng. 2021. V. 15. № 4. P. 902. https://doi.org/10.1007/s11705-020-1985-y
  35. Sooch B.S., Mann M.K., Sharma M. // J. Clust. Sci. 2021. V. 32. P. 1141. https://doi.org/10.1007/s10876-020-01878-5
  36. Deng W., Wang G., Tang L., et al. // J. Colloid Interface Sci. 2022. V. 608. Part 1. P. 186. https://doi.org/10.1016/j.jcis.2021.09.178
  37. Ketegenov T., Kamunur K., Batkal A., et al. // ChemEngineering. 2022. V. 6. № 2. P. 30 (18pp). https://doi.org/10.3390/chemengineering6020030
  38. Shareef A.M., Kadim A.M. // Iraqi J. Sci. 2023. V. 64. № 7. P. 3356. https://doi.org/10.24996/ijs.2023.64.7.17; https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/7184/4354
  39. Ma X., Zhou S., Cao J., et al. // J. Energy Storage. 2024. V. 84. № 18. P. 110710 (9pp). https://doi.org/10.1016/j.est.2024.110710
  40. Уракаев Ф.Х., Юсупов Т.С. Численная оценка кинематических и динамических характеристик обработки минералов в дезинтеграторе // ФТПРПИ. 2017. № 1. С. 135. https://sibran.ru/upload/iblock/1e2/1e2009c5c057dbe17f6cc88cc8690ef2.pdf
  41. Urakaev F. Kh., Yusupov T.S. // J. Mining Sci. 2017. V. 53. № 1. P. 133. https://doi.org/10.1134/S1062739117011945]
  42. Уракаев Ф.Х., Массалимов И.А., Юсупов Т.С., и др. // Вестник КазНУ. Сер. хим. 2016. Т. 83. № 3—4. С. 11. http://dx.doi.org/10.15328/cb780; https://bulletin.chemistry.kz/index.php/kaznu/article/view/780/609 [Urakaev F. Kh., Massalimov I.A., Yusupov T.S., et al. // Chem. Bull. Kazakh National Univ. 2016. V. 83. № 3—4. P. 11. http://dx.doi.org/10.15328/cb780]
  43. Массалимов И.А., Массалимов Б.И., Шаяхметов А.У., и др. // Физ. мезомех. 2024. Т. 27. № 3. С. 131. doi: 10.55652/1683-805X_2024_27_3_131-158. [Massalimov I.A., Massalimov B.I., Shayakhmetov A.U., и др. // Phys. Mesomech. 2024. V. 27. № 5. P. 592. https://doi.org/10.1134/S1029959924050084]
  44. Urakaev F. Kh., Khan N.V., Niyazbayeva A.I., et al. // Chimica Techno Acta. 2023. V. 10. № 2. P. 202310213 (8pp). https://doi.org/10.15826/chimtech.2023.10.2.13
  45. Zhang W.Q., Jin D., Liu C.X., et al. // Chem Eng J. 2024. V. 498. P. 155380 (14pp). https://doi.org/10.1016/j.cej.2024.155380
  46. Уракаев Ф.Х. // Коллоид. журн. 2024. Т. 86. № 2. С. 266. doi: 10.31857/S0023291224020119 [Urakaev F.Kh. // Colloid J. 2024. V. 86. No. 2. P. 278. https://doi.org/10.1134/S1061933X23601245]
  47. Ахметов Т.Г., Бусыгин В.М., Гайсин JI.Г., Ахметова Р.Т. Химическая технология неорганических веществ. СПб.: Издательство «Лань». 2019. 452 с. https://e.lanbook.com/book/119611
  48. Дерягина Э.Н., Леванова Е.П., Грабельных В.А., и др. // ЖОХ. 2005. Т. 75. № 2. С. 220. https://elibrary.ru/item.asp?id=9139133 [Deryagina E.N., Levanova, E.P., Grabel’nykh, et al. // Russ. J. Gen. Chem. 2005. V. 75. P. 194. https://doi.org/10.1007/s11176-005-0197-y]
  49. Козлов И.А., Кузнецов Б.Н. Способ растворения элементной серы: Патент RU2184077 // Б.И. 2002. № 7. С. 5. https://www.elibrary.ru/item.asp?id=37882247; https://www.elibrary.ru/download/elibrary_37882247_55649239.pdf
  50. Omori K. // Mineral. J. 1968. V. 5. № 5. P. 334. https://www.jstage.jst.go.jp/article/minerj1953/5/5/5_5_334/_pdf
  51. Bhushana N., Ganganagappa N., Nagabhushana B.M., Shivakumara C. // Philos. Mag. Lett. 2010. V. 90. № 4. P. 289. doi: 10.1080/09500831003636051
  52. Kloprogge J.T., Ruan H., Duong L.V., Frost R.L. // Geol. Mijnb./Neth. J. Geosci. 2001. V. 80. № 2. P. 41. doi: 10.1017/S0016774600022307
  53. Gupta A., Singh P., Shivakumara C. // Solid State Commun. 2010. V. 150. № 9—10. P. 386. https://doi.org/10.1016/j.ssc.2009.11.039
  54. Sifontes Á.B., Cañizales E., Toro-Mendoza J., et al. // J. Nanomater. 2015. V. 2015. P. 510376 (8pp). https://doi.org/10.1155/2015/510376
  55. Meenatchi B, Renuga V. // Chem Sci Trans. 2015. V. 4. № 2. P. 577. https://doi.org/10.7598/cst2015.1028
  56. Danielson L.-G., Chai X.-S., Behm M., Renberg L. // J. Pulp Pap Sci. 1996. V. 22. № 6. P. J187. https://www.researchgate.net/publication/264798173
  57. Liu G., Niu P., Yin L., Cheng H.-M. // J. Am. Chem. Soc. 2012. V. 134. № 22. P. 9070. https://doi.org/10.1021/ja302897b

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».