Kinetic analysis of formation of magnesia spinel by thermal analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Thermal analysis of mixtures ofvarious alumina precursors (powders of fused corundum, smelter-grade alumina GKand non-smelter-grade alumina G-00, combustion product of xerogel from aluminumnitrate and citric acid) with periclase at different heating ratesis performed. By analyzing the shape and position of exothermicpeaks, which corresponded to the formation of magnesia spinel MgAl2O4, the values of the Avrami coefficient and theeffective values of the activation energy are determined according toKissinger, Augis-Bennett, and Ozawa equations. The effect of mechanoactivation (MA)of the reactants is analyzed. Co-treatment of periclase and corundum-containingreagents allowed reducing the activation energy of the reaction by15–20%. Pre-treatment of one of the components of the mixtureis most appropriate for periclase since it allowed reducingЕаby ~14%, whereas MA of corundum alone reduced thischaracteristic only by ~9%. Using the combustion product ofxerogel of alumina-oxide composition in spinel synthesis is very effectivesince it accelerated the process by reducingЕаby~11% even without MA. The values of the Avrami constantare found to be in the range 0.57–0.76, which correspondsto the mechanism of nucleation and crystal growth.

About the authors

N. V. Filatova

Ivanovo State University of Chemistry and Technology

Email: zyanata@mail.ru
Ivanovo, Russia

N. F. Kosenko

Ivanovo State University of Chemistry and Technology

Email: zyanata@mail.ru
Ivanovo, Russia

A. S. Artyushin

Ivanovo State University of Chemistry and Technology

Author for correspondence.
Email: zyanata@mail.ru
Ivanovo, Russia

References

  1. Obradović N., Filipović S., Fahrenholtz W.G., et al. // Scienceof Sintering. 2023. V. 55. № 1. P. 1. https://doi.org/10.2298/SOS2301001O
  2. Chen Z., Yan W., L G.i, et al. //J.of the European Ceramic Society. 2024. V. 44.Is. 2. P. 1070. https://doi.org/10.1016/j.jeurceramsoc.2023.10.004
  3. Gajdowski C., D’Elia R., FaderlN., et al. // Ceram. Int.2022. V. 48. P. 18199. doi: 10.1016/j.ceramint.2022.03.079
  4. Baruah B., Bhattacharyya S., Sarkar R. // AppliedCeramic Technology. 2023. V. 20. Is. 3. P. 1331. https://doi.org/10.1111/ijac.14309
  5. Zegadi A., Kolli M., Hamidouche M., Fantozzi G. //Ceramics International. 2018. V. 44. P. 18828. https://doi.org/10.1016/j.ceramint.2018.07.117
  6. Косенко Н.Ф. Смирнова М.А. // Огнеупорыи техническая керамика. 2011. № 9. С. 3.
  7. Tran A., Tran V., Nguyet N.T.M.,et al. // ACS Omega.2023. V. 8. P. 36253. https://doi.org/10.1021/acsomega.3c04782
  8. Liu J., Lv X., Li J., et al. //Science of Sintering. 2016. V. 48. P. 353. http://dx.doi.org/10.2298/SOS1603353L
  9. Obradović N., Fahrenholtz W.G.,Filipović S., et al. // J. of Thermal Analysis and Calorimetry. 2020. V. 140.P. 95. https://doi.org/10.1007/s10973-019-08846-w
  10. Филатова Н.В., Косенко Н.Ф., Артюшин А.С.и др. // Росс. хим. журн. 2024. Т. 68. № 2.
  11. Filatova N.V., Kosenko N.F., Denisova O.P. // Russ. J. of PhysicalChemistry A. 2022. V. 96. № 6. P. 1147. http://dx.doi.org/10.1134/S0036024422060085
  12. Gotor F.J., Criado J.M., Malek J., Koga N. // J. Phys. Chem. A.2000. V. 104. Is. 46.P. 10777. https://doi.org/10.1021/jp0022205
  13. Sinhamahapatra S.,Shamim M., Tripathi H.S.,et al. // Ceramics International. 2016. V. 42. P. 9204. http://dx.doi.org/10.1016/j.ceramint.2016.03.017
  14. Filatova N.V., Kosenko N.F., Badanov M.A. //ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021.V. 64. № 11. P. 97. https://doi.org/10.6060/ivkkt.20216411.6478
  15. Han Y.,Li H. // Case Studies in Thermal Engineering. 2023. V.45. Art. 102993. https://doi.org/10.1016/j.csite.2023.102993
  16. Kissinger H.E. // J. Res.Natl. Bur. Stand. 1956. V. 56. P. 217.
  17. Augis J.A.,Bennett J.E. // J. Therm. Anal. 1978. V. 13. P. 283.
  18. Ozawa T. // Bull. Chem. Soc. Jpn. 1965.V. 35. P. 1881.
  19. Watson E.B., Price J.D. // Geochim. Cosmochim. Acta. 2002 V. 66. Is. 12.P. 2123. https://doi.org/10.1016/S0016-7037(02)00827-X

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».