MIXED LIGAND COMPLEX CONSTRUCTION OF NICKEL(II) AND ZINC CATIONS WITH HISTIDINE, LYSINE AND ARGININE IN AQUEOUS SOLUTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of mixed-ligand complexes of different composition in the systems M(II) – L-histidine (His) – L (M = Ni, Zn; L = L-lysine (Lys), L-arginine (Arg)) has been studied by pH-metry and spectrophotometry methods and their formation constants have been calculated at 298.15 K and ionic strength I = 0.5 mol/L (KNO3). Based on the comparative analysis of the coproportioning reaction constants, the dentativity of the ligands was evaluated and the most probable way of coordination of amino acid residues in the mixed complexes was proposed.

About the authors

Ya. E Karaseva

Ivanovo State University

Email: karasevaaroslavna255@gmail.com
Ivanovo, Russia

D. F Pyreu

Ivanovo State University

Ivanovo, Russia

References

  1. Yamauchi O., Odani A. // J. Chem. Soc., Dalton Trans. 2002. P. 3411. https://doi.org/10.1039/B202385G
  2. Yamauchi O., Odani A. // Inorg. Chim. Acta. 1985. V. 100. P. 165. https://doi.org/10.1016/S0020-1693(00)88304-8
  3. Yang P., Zheng W., Hua Z. // Inorg. Chem. 2000. V. 39. № 24. P. 5454. https://doi.org/10.1021/ic0000146
  4. Raman N., Sakthivel A., Raja J.D. et al // Russ. J. Inorg. Chem. 2008. V. 53. P. 213. https://doi.org/10.1134/S0036023608020113
  5. Demidov V.N., Kas'yanenko N.A., Antonov V.S. et al. // Russ. J. Gen. Chem. 2012. V.82. P. 602. https://doi.org/10.1134/S1070363212030401
  6. Chaga G.S. // J. Biochem. Biophys. Methods. 2001. V. 49. P. 313.
  7. Никитина М.Г., Пырэу Д.Ф. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1482. https://doi.org/10.1134/S0036023621100120
  8. Бородин В.А., Васильев В.П., Козловский Е.В. Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219.
  9. Pettit L.D. // Pure Appl. Chem. 1984. V. 56. P. 247. http://dx.doi.org/10.1351/pac198456020247
  10. Yamauchi O., Odani A. // Pure Appl. Chem. 1996. V. 68. P. 469. http://dx.doi.org/10.1351/pac199668020469
  11. Farkas E., Gergely A., Kás E. // J. Inorg. Nucl. Chem. 1981. V. 43. P. 1591. https://doi.org/10.1016/0022-1902(81)80343-0
  12. Sovago I., Kiss I., Kiss T., Gergely A. // J. Chem. Soc., Dalton Trans. 1978. P. 964.
  13. Brookes G., Pettit L. // J. Chem. Soc., Dalton Trans. 1976. P. 42. https://doi.org/10.1039/DT9760000042
  14. Blackburn J., Jones M. // J. Inorg. Nucl. Chem. 1973. V. 35. P. 1605.
  15. Alemdaroclu T., Berthon G. // Inorg. Chim. Acta. 1981. V. 56. P. 115.
  16. Alemdaroclu T., Berthon G. // Inorg. Chim. Acta. 1981. V. 56. P. 115.
  17. Никитина М.Г., Груздев М.С., Пырэу Д.Ф. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 363.
  18. Zhou L., Li S., Su Y., Yi X., Zheng A., Deng F. // J. Phys. Chem. B 2013. V. 117. P. 8954. https://doi.org/10.1021/jp4041937
  19. Kistenmacher T.J. // Acta Cryst. 1972. V. B28. P. 1302. https://doi.org/10.1107/S0567740872004133
  20. Kretsinger R.H., Cotton F.A., Bryan R.F. // Acta Cryst. 1963. V. 16. P. 651. https://doi.org/10.1107/S0365110063001705
  21. Harding M.M., Cole S.J. // Acta Cryst. 1963. V. 16. P. 643. https://doi.org/10.1107/S0365110063001699
  22. Venkatasubramanian K., Suresh E. // J. Coord. Chem. 1993. V. 29. P. 225. https://doi.org/10.1080/00958979308037428
  23. Wu Z., Fu Z., Tian Y., et al. // Green Processing and Synthesis. 2022. V. 11. P. 445. https://doi.org/10.1515/gps-2022-0043
  24. Wojciechowska A., Kochel A., Duczmal M. // Materials Chemistry and Physics. 2016. V. 182. P. 472. https://doi.org/10.1016/j.matchemphys.2016.07.059
  25. Daryanavard M., Jarrah N. // J. Iranian Chem. Soc. 2019. V. 16. P. 1053. https://doi.org/10.1007/s13738-018-01581-3
  26. Sari H., Covington A. // J. Chem. Eng. Data. 2005. V. 50. P. 1425.
  27. Pettit L., Swash J. // J. Chem. Soc., Dalton Trans. 1976. P. 588. https://doi.org/10.1039/DT9760000588

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).