THE ROLE OF DIFFUSION PROCESSES IN DETERMINING THE PARAMETERS OF THERMAL EXPLOSION OF ENERGY COMPOSITE MATERIALS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Comparison of calculated and experimental delay periods of thermal autoignition τ of rocket propellant samples of NEPE type with characteristic sizes from 20 to 100 mm is presented. The experimental data obtained in the isoperibolic regime are taken from literature sources. In our calculation we used the model of chain reaction of thermal decomposition of nitroether plasticizers in NEPE composition. The calculated values of τ depend weakly on the sample size, but they are significantly (for small sizes – several times) smaller than those obtained in experiments. It is shown that the reasons for the discrepancy between the calculated and experimental values of the autoignition delay periods were the loss of active particles – decomposition products of nitroethers (primarily NO2) both due to interaction with stabilizers and due to their migration into the environment due to leaky packing of samples. The role of migration phenomena is considered on the example of the solution of the diffusion equation, which takes into account the nucleation, multiplication and death of active particles.

About the authors

A. A Koptelov

Federal Center for Dual Technologies “Soyuz”

Email: aakoptelov@gmail.com
Dzerzhinsky, Russia

A. A Rogozina

Federal Center for Dual Technologies “Soyuz”

Dzerzhinsky, Russia

D. N Sadovnichiy

Federal Center for Dual Technologies “Soyuz”

Dzerzhinsky, Russia

Yu. M Milekhin

Federal Center for Dual Technologies “Soyuz”

Dzerzhinsky, Russia

References

  1. Hsu P.C., Zhang M.X., Pagoria P. et al. // Shock Compression of Condensed Matter. AIP Conference Proceedings 1793. 2017. P. 040033-1 – 040033-8. https://doi.org/10.103/1.4971527
  2. Krause G. // Propellants, Explosives, Pyrotechnics. 2012. V. 37. P. 107. https://doi.org/10.1002/ptep.201100007
  3. Erikson W.W., Kaneshige M.J. // JANNAF 46th CS, 34th EPSS and 28th PSHS Joint Meeting, Albuquerque, NM, Dec. 2014. SANDIA 2014-20085C.
  4. Koerner J., Maienschein J., Burnham A., Wennhoff A. // North American Thermal Analysis Society 35th Annual Conference. East Lansing, MI, USA. August 26–29, 2007. UCRL—CONF-232590.
  5. Djalal Trache, Ahmed Fouzi Tarchoun // J. of Materials Science. 2018. V. 53. № 1. P. 100. https://doi.org/10.1007/s10853-017-1474-y
  6. Wu W., Chen C., Fu X. et al. // Propellants, Explosives, Pyrotechnics. 2017. V. 42. № 5. P. 541. https://doi.org/10.1002./prep.201600117
  7. Yallun Sun, Hui Ren, Qingjie Jiao // J. of Thermal Analysis and Calorimetry. 2017. V. 131. № 1. P. 101. https://doi.org/10.1007/s10973-017-6525-8
  8. Yulong Liang, Mi Zhang, Hui Ren, Qingjie Jiao // J. of Chemistry (China). V. 2020. Article ID8414505. P. 1. https://doi.org/10.1155/2020/8414505
  9. Ling-ze Kong, Ke-hai Dong, Ai-min Jiang et al. // Defence Technology. 2023. V. 25. P. 220. https://doi.org/10.1016/j.dt.2022.06.001
  10. Qin Pei-wen, Zhao Xiao-bin, Li Jun et al. // Chinese J. of Explosives and Propellants. 2016. V. 39. № 1. P. 84. https://doi.org/10.14077/j.issn.1007-7812.2016.01.016
  11. Koptelov A.A., Milekhin Yu.M., Matveev A.A., et al. // Rus. J. of Applied Chemistry. 2017. V. 90. № 8. P. 1265.
  12. Azatyan V.V., Prokopenko V.M., Timerbulatov T.R. // Rus. J. of Phys. Chem.A. 2020. V. 94. № 1. P. 41. https://doi.org/10.1134/S0036024420010021
  13. Yan Gu, Silong Yu, Qiong Wang et al. // High Temperature Materials and Processes. 2022. V. 41. P. 589. https://doi.org/10.1515/htmp-2022-0234
  14. Elbasuney S., Fahd A., Mostafa H.E. et al. // Defence Technology. 2018. V. 14. P. 70. https://doi.org/10.1016/j.dt.2017.11.003
  15. Попок В.Н., Ильиных К.Ф. // Бутлеровские сообщения. 2013. Т. 33. № 3. С. 42–48.
  16. Kotoyori T. Critical Temperatures for the Thermal Explosion of Chemicals. Amsterdam: Elsevier, 2005. 376 p.
  17. Милехин Ю.М., Коптелов А.А., Коптелов И.А. и др. // Горение и взрыв. 2022. Т. 15. № 3. С. 102.
  18. Bohn M.A. // Presentation on the meeting Nitrocellulose supply, Ageing and Characterization, Aldermaston, England. 2007.
  19. Андреев К.К., Беляев А.Ф. Теория взрывчатых веществ. М.: Оборонгиз, 1960. 596 с.
  20. Vyazovkin S., Chrissafis K., Di Lorenzo M.L. et al. // Thermochimica Acta. 2014. V. 590. P. 1.
  21. Koptelov A.A., Milekhin Yu.M., Sadovnichii D.N., Shishov N.I. // High Temperature. 2008. V. 46. № 2. P. 261.
  22. Львов Б.В. Терморазложение твердых и жидких веществ. СПб: Изд-во Политехнического университета, 2006. 278 с.
  23. Koptelov A.A., Koptelov I.A. // Polymer Science. Ser. B. 2009. V. 51. № 7–8. P. 313.
  24. Wang X., Yao D., Bai S. et al. // Chinese J. of Energetic Materials. 2013. V. 21. № 5. P. 594. https://doi.org/10.3969/j.issn.1006-9941.2013.05.007
  25. Qu B., Pan Q., Tang Q.-F. et al. // Chinese J. of Explosives and Propellants. 2018. V. 41. № 3. P. 278–284. https://doi.org/10.14077/j.issn.1007–7812.2018.03.11
  26. Koptelov A.A., Milekhin Yu.M., Rogozina A.A., et al. // Rus. J. of Applied Chemistry. 2018. V. 91. № 11. P. 1890. https://doi.org/10.1134/S1070427218110216
  27. Zhi-ping Huang, Hai-ying Nie, Yuan-yuan Zhang et al. // J. of Hazardous Materials. 2012. V. 229–230. P. 251. http://dx.doi.org/10.1016/j.jhazmat.2012.05.103

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).