CHEMOINFORMATICS ANALYSIS OF THE KINETICS OF PHOTODESTRUCTION OF ACID AZO DYES IN AQUEOUS SOLUTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study presents an analysis of the patterns of photodestruction of acid azo dyes in aqueous solution. A fragment-based approach was employed, which decomposes the molecule of the organic compound into molecular fragments of connected atoms. This analysis allowed evaluation of the contribution of molecular substructure fragments to the logarithm of the first-order photodestruction rate constant of the dyes. The effects and directions of fragments with various sequences of connected atoms were analyzed. The photodestruction kinetics in solution were compared with the lightfastness characteristics of the dyes adsorbed on a natural keratin substrate. Similarities were found between several individual polyatomic fragments responsible for photodestruction in solution and those affecting lightfastness in the natural substrate.

About the authors

F. Yu. Telegin

Ivanovo State University of Chemistry and Technology

Email: f.telegin@mail.ru
Ivanovo, Russia

D. Kh. Zhan

Ivanovo State University of Chemistry and Technology; Wuhan Textile University

Ivanovo, Russia; Wuhan, China

V. G. Pryazhnikova

Wuhan Textile University

Wuhan, China

E. E. Molchanov

Ivanovo State University of Chemistry and Technology

Ivanovo, Russia

References

  1. SDC, AATCC. Colour Index™ Online. https://colour-index.com/about
  2. World Dye Variety. http://www.worlddyevariety.com/
  3. Kuenemann M.A., Szymczyk M., ChenY. et al. // Chemical Science. 2017. V. 8. № 7. P. 4334. https://doi.org/10.1039/C7SC00567A.
  4. Williams T.N., Kuenemann M.A., Van Den Driessche G.A. et al. // ACS Sustainable Chemistry & Engineering. 2018. V. 6. № 2. P. 2344. https://doi.org/10.1021/acssuschemeng.7b03795.
  5. Williams T.N., Van Den Driessche G.A., Valery A.R.B. et al. // Ibid. 2018. V. 6. № 11. P. 14248. https://doi.org/10.1021/acssuschemeng.8b02882.
  6. Кузнецов Д.Н., Кобраков К.И., Ручкина А.Г. et al. // Изв. вузов. Химия и химическая технология. 2017. T. 60. № 1. C. 4. https://doi.org/10.6060/tcct.2017601.5423.
  7. Кричевский Г.Е. Фотохимические превращения красителей и светостабилизация окрашенных материалов. М.: Химия, 1986. 248 с.
  8. Hagan, E., Castro-Soto, I., Breault, M. et al. // Heritage Science. 2022. V. 10. № 1. P. 1. https://doi.org/10.1186/s40494-022-00675-9.
  9. Mishra V.R., Ghanavatkar C.W., Kumari Shukla V. et al. Computational Chemistry Methods: 7 Effect of substituent on photostability and lightfastness of azo dye and their photodegradation mechanism — Mechanistic study using density functional theory, Applications. P. Ramasami, Ed.; De Gruyter, Berlin; Boston, 2020. P. 115. ISBN 9783110631623.
  10. Telegin F.Y., Ran J., Pryazhnikova V.G. // The Scientific Notes of Color Society of Russia. V. 1. First Russian Congress on Color; Schindler, Verena M., Griber, Yulia A., Eds.; Smolensk State University. 2019. P. 97.
  11. Ran J., Pryazhnikova V.G., Telegin F.Y. // Colorants 2022. V. 1. № 3. P. 280. https://doi.org/10.3390/colorants1030017
  12. Telegin F.Y., Malanker J.V., Ran J. et al. 9 — Innovations in dyes and chemoinformatics approach // Sustainable Innovations in the Textile Industry: The Textile Institute Book Series, R. Paul, T. Gries, Eds. Woodhead Publishing, 2024. P. 217—254. ISBN978-0-323-90392-9.
  13. Javaid R., Qazi U.Y. // Int. J. Environ. Res. Public Health. 2019. V. 16. № 11. P. 1. https://doi.org/10.3390/ijerph16112066.
  14. Khataee, A. R., Kasiri, M.B. // J. of Molecular Catalysis A: Chemical. 2010. V. 328. № 1—2. P. 8—26. https://doi.org/10.1016/j.molcata.2010.05.023.
  15. Deng, Y., Li, S., Ye, D. et al. // Micromachines. 2020. V. 11. № 1. P. 1. https://doi.org/10.3390/mi11010081.
  16. Weiss A.M., Yariv E., Reisfeld R. // Optical Materials. 2003. V. 24. № 1—2. P. 31. https://doi.org/10.1016/S0925-3467(03)00101-0.
  17. Yan K., Hu Z., Yu P. et al. // Nat. Commun. 2024. V. 15. P. 2593. https://doi.org/10.1038/s41467-024-46853-0.
  18. Sokolowska, J., Czajkowski, W., Podsiadły, R. // Dyes and Pigments. 2001. V. 49. № 3. P. 187. https://doi.org/10.1016/S0143-7208(01)00018-3.
  19. Liu, Y., Liu, S., Miao, R. et al. // Tetrahedron. 2023. V. 149. P. 133664. https://doi.org/10.1016/j.tet.2023.133664.
  20. Lin, S.-L., Su, S.-P., Yang, Y.-Z. et al. // J. of Nanobiotechnology. 2025. V. 23. № 1. P. 1. https://doi.org/10.1186/s12951-025-03145-z.
  21. Zhai Y., Chang Y., Tang A. et al. // J. Mater. Chem. A. 2025. V. 13. P. 9589. https://doi.org/10.1039/D4TA09019E.
  22. Zhang G., Zhang S. // J. Environ. Sci. (China). 2020. V. 90. P. 41. https://doi.org/10.1016/j.jes.2019.11.009.
  23. Маджидов, Т.И., Баскин, И.И., Антипин, И.С. и др. Введение в хемоинформатику: Компьютерное представление химических структур: учеб. пособие: 1: Компьютерное представление химических структур. Казань, Москва, Страсбург, 2020. 176 с.
  24. David L., Thakkar A., Mercado R. et al. // J. Cheminform. 2020. V. 12. № 56. P. 1. https://doi.org/10.1186/s13321-020-00460-5.
  25. ChemMine Tools. https://chemminetools.ucr.edu
  26. Tibshirani R. // J. Series B: Methodological. 1996. V. 58. P. 267. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
  27. Telegin F.Y. Fragment analysis of dye structure. https://github.com/ferntea/Fragment_analysis_of_dye_structure.
  28. Baskin I., Varnek A. Fragment Descriptors in SAR/QSAR/QSPR Studies, Molecular Similarity Analysis and in Virtual Screening. In Chemoinformatics approaches to virtual screening; Varnek A., Tropsha A., Eds.; RSC Publishing: Cambridge, 2008. P. 1-43. ISBN97808540414420854041443.
  29. Telegin F.Y., Marfin Y.S. // Rus. J. of Inorganic Chemistry. 2022. V. 67. P. 362. https://doi.org/10.1134/S0036023622030135.
  30. Zhokhova N.I., Palyulin V.A., Baskin I.I. et al. // Rus. J. of Phys. Chem. A. 2007. V. 81. P. 9. https://doi.org/10.1134/S0036024407010037.
  31. Dolomatov M.Yu., Aubekerov T.M. // Rus. J. of Phys. Chem. A. 2018. V. 92. P. 401. https://doi.org/10.1134/S0036024418030068.
  32. Доломатов М.Ю., Коледин О.С., Ахтимова К.Р. // Изв. вузов. Химия и хим. технология. 2021. V. 64. C. 96. https://doi.org/10.6060/ivkkt.20216407.6394.
  33. Matyushin D.D., Sholokhova A.Y., Buryak A.K. // Rus. J. of Phys. Chem. A. 2023. V. 97. P. 377. https://doi.org/10.1134/S00360244423020152.
  34. Emperor Chemical. https://emperordye.com.
  35. María Curieses Andrés C., La Manuel Pérez de Lastra, J. et al. Reactivity and Applications of Singlet Oxygen Molecule. In Reactive Oxygen Species - Advances and Developments; Surguchov, A., Ahmad, R., Eds.; IntechOpen, London, 2024. P. 1-24. ISBN978-1-83768-209-6.
  36. Wang T., Chen W., Dong T. et al. // Materials (Basel) 2020. 13. № 18. P. 1-13. https://doi.org/10.3390/ma13184141.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).