STUDY OF THE COLLOIDAL STABILITY OF NANOSCALE AQUEOUS DISPERSIONS OF n-ALKANES C19H40, C20H42 and C21H44
- Autores: Kuryakov V.N1
-
Afiliações:
- Institute of Oil and Gas Problems, RAS
- Edição: Volume 99, Nº 10 (2025)
- Páginas: 1523-1527
- Seção: PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
- ##submission.dateSubmitted##: 27.01.2026
- ##submission.datePublished##: 15.10.2025
- URL: https://journal-vniispk.ru/0044-4537/article/view/376380
- DOI: https://doi.org/10.7868/S3034553725100094
- ID: 376380
Citar
Resumo
The stability of aqueous nanoscale dispersions of n-alkanes C19H40, C20H42 and C21H44 was studied using optical methods by measuring laser light scattering intensity and particle size via dynamic light scattering at various temperatures. It was experimentally demonstrated that dispersions of n-alkanes in water, prepared by ultrasonic dispersion without surfactants, are stable under repeated thermal cycles of heating and cooling, during which the n-alkane particles in the sample melt and recrystallize.
Palavras-chave
Sobre autores
V. Kuryakov
Institute of Oil and Gas Problems, RAS
Email: Vladimir.kuryakov@ipng.ru
Moscow, Russia
Bibliografia
- El Majd A., Sair S., Ait Ousaleh H. et al. // J. Build. Eng. 2024. V. 96. P. 110485. https://doi.org/10.1016/j.jobe.2024.110485.
- Liu L., Hammami N., Trovalet L. et al. // J. Energy Storage. 2022. V. 56. P. 105760. https://doi.org/10.1016/j.est.2022.105760.
- Liu Y., Zheng R., Li J. // Renew. Sustain. Energy Rev. 2022. V. 168. P. 112783. https://doi.org/10.1016/j.rser.2022.112783.
- Gu H., Chen Y., Yao X. et al. // Chem. Eng. J. 2023. V. 455. P. 140701. https://doi.org/10.1016/j.cej.2022.140701.
- Pathak S.K., Tyagi V.V., Chopra K. et al. // Sol. Energy Mater. Sol. Cells. 2023. V. 254. P. 112237. https://doi.org/10.1016/j.solmat.2023.112237.
- Do J.Y., Son N., Shin J. et al. // Mater. Des. 2021. V. 198. P. 109357. https://doi.org/10.1016/j.matdes.2020.109357.
- Jung N., Yun M., Jeon S. // J. Chem. Phys. 2012. V. 136. P. 104903. https://doi.org/10.1063/1.3692296.
- Nowak M.J., Severtson S.J. // J. of Materials Science. 2001. V. 36. P 4159. https://doi.org/10.1023/A:1017908703339.
- Chen M., Liu H., Zhang H., Wang X. // J. Energy Storage. 2023. V. 57. P. 106232. https://doi.org/10.1016/j.est.2022.106232.
- Seitz S., Ajiro H. // Sol. Energy Mater. Sol. Cells. 2019. V. 190. P. 57. https://doi.org/10.1016/j.solmat.2018.10.012.
- Kuryakov V.N. // Mendeleev Commun. 2022. V. 32. P. 417. https://doi.org/10.1016/j.mencom.2022.05.043.
- Kuryakov V., Zaripova Y., Varfolomeev M. et al. // J. Therm. Anal. Calorim. 2020. V. 142. P. 2035. https://doi.org/10.1007/s10973-020-10001-9.
- Kuryakov V.N., Ivanova D.D., Kienskaya K.I. // Russ. Chem. Bull. 2020. V. 69. P. 1306. https://doi.org/10.1007/s11172-020-2902-8.
- van de Hulst H.C. Light Scattering by Small Particles. New York: Dover Publications, 1981. 470 p.
- Johnson J.F. // Ind. Eng. Chem. 1954. V. 46. P. 1046. https://doi.org/10.1021/ie50533a062.
- McNamara W.B., Didenko Y.T., Suslick K.S. // J. Phys. Chem. B. 2003. V. 107. P. 7303. https://doi.org/10.1021/jp034236b.
- McNamara W.B., Didenko Y.T., Suslick K.S. // Nature. 1999. V. 401. P. 772. https://doi.org/10.1038/44536.
- Gogate P.R., Pandit A.B. // AIChE J. 2000. V. 46. P. 372. https://doi.org/10.1002/aic.690460215.
- Adewuyi Y.G. // Ind. Eng. & Chem. Res. 2001. V. 40. P. 4681. https://doi.org/10.1021/ie010096l.
- Suslick K.S., Gawienowski J.J., Schubert P.F., Wang H.H. // J. Phys. Chem.1983. V. 87. P. 2299. https://doi.org/10.1021/j100236a013.
Arquivos suplementares

