Determination Of Optimal Conditions For Template Sol-Gel Synthesis For The Formation Of Antibacterial Materials

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

One of the current global problems is the increasing resistance of microorganisms to antibacterial agents and the emergence of associated infections. Therefore, the synthesis of new hybrid materials capable of resisting bacteria is necessary. In this work, loading platforms for antibacterial material based on tetraethoxysilane were formed using yeast cells Ogataea polymorpha BKM Y-2559 and Cryptococcus curvatus VKM Y-3288 as templates under conditions of acid and alkaline hydrolysis. Using scanning electron microscopy, it was shown that an alkaline environment is most optimal when using yeast cells as templates for the formation of a porous material. The surface-active properties of a number of quaternary ammonium compounds were studied using the tensometry method to select the optimal template for the production of antibacterial materials in one stage.

全文:

受限制的访问

作者简介

E. Lantsova

Tula State University

编辑信件的主要联系方式.
Email: e.a.lantsova@tsu.tula.ru
俄罗斯联邦, Tula, 300012

M. Bardina

Tula State University

Email: e.a.lantsova@tsu.tula.ru
俄罗斯联邦, Tula, 300012

E. Saverina

Tula State University

Email: e.a.lantsova@tsu.tula.ru
俄罗斯联邦, Tula, 300012

O. Kamanina

Tula State University

Email: e.a.lantsova@tsu.tula.ru
俄罗斯联邦, Tula, 300012

参考

  1. Cámara M., Green W., MacPhee C. et al. // Biofilms Microbiomes. 2022. V. 8. № 1. P. 42. https://doi.org/10.1038/s41522-022-00306-y
  2. Nadeem S., Gohar U., Tahir S. et al. // Crit. Rev. Microbiol. 2020. V. 46. № 5. P. 578. https://doi.org/10.1080/1040841X.2020.1813687
  3. Murray C.J.L., Ikuta K.S., Sharara F. et al. // Lancet. 2022. V. 399. № 10325. P. 629. https://doi.org/10.1016/S0140-6736(21)02724-0
  4. Saverina E.A., Frolov N.A., Kamanina O.A. et al. // ACS Infect. Dis. 2023. V. 9. № 3. P. 394. https://doi.org/10.1021/acsinfecdis.2c00469
  5. Nielsen J.E., Alford M.A., Yung D.B.Y. et al. // ACS Infect. Dis. 2022. V. 8. № 3. P. 533. https://doi.org/10.1021/acsinfecdis.1c00536
  6. Song B., Zhang E., Han X. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 19. P. 21330. https://doi.org/10.1021/acsami.9b19992
  7. Spirescu V.A., Chircov C., Grumezescu A.M. et al. // Int. J. Mol. Sci. 2021. V. 22. № 9. P. 4595. https://doi.org/10.3390/ijms22094595
  8. Zhang T., Jin Z., Jia Z. et al. // React. Funct. Polym. 2022. V. 170. P. 105117. https://doi.org/10.1016/j.reactfunctpolym.2021.105117
  9. Ma B., Chen Y., Hu G. et al. // ACS Biomater. Sci. Eng. 2022. V. 8. № 1. P. 109. https://doi.org/10.1021/acsbiomaterials.1c01267
  10. Alekseeva O.V., Smirnova D.N., Noskov A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 8. P. 953. https://doi.org/10.1134/S0036023623601071
  11. Wen M., Fu X., Li T. et al. // Russ. J. Gen. Chem. 2023. V. 93. № 9. P. 2371. https://doi.org/10.1134/S1070363223090189
  12. Diaz D., Church J., Young M. et al. // J. Environ. Sci. 2019. V. 82. P. 213. https://doi.org/10.1016/j.jes.2019.03.011
  13. Zhang H., Liu L., Hou P. et al. // Polymers. 2022. V. 14. № 9. P. 1737. https://doi.org/10.3390/polym14091737
  14. Feng X.Z., Xiao Z., Zhang L. et al. // Nat. Prod. Commun. 2020. V. 15. № 8. P. 1934578X20948365. https://doi.org/10.1177/1934578X20948365
  15. Garipov M.R., Sabirova A.E., Pavelyev R.S. et al. // Bioorg. Chem. 2020. V. 104. P. 104306. https://doi.org/10.1016/j.bioorg.2020.104306
  16. Sokolova A.S., Yarovaya O.I., Baranova D.V. et al. // Arch. Virol. 2021. V. 166. № 7. P. 1965. https://doi.org/10.1007/s00705-021-05102-1
  17. Gaspar C., Rolo J., Cerca N. et al. // Pathogens. 2021. V. 10. № 3. P. 261. https://doi.org/10.3390/pathogens10030261
  18. Bueno V., Ghoshal S. // Langmuir. 2020. V. 36. № 48. P. 14633. https://doi.org/10.1021/acs.langmuir.0c02501
  19. Zaharudin N.S., Isa E.D.M., Ahmad H. et al. // J. Saudi Chem. Soc. 2020. V. 24. № 3. P. 289. https://doi.org/10.1016/j.jscs.2020.01.003
  20. Stewart C.A., Finer Y., Hatton B.D. // Sci. Rep. 2018. V. 8. № 1. P. 1. https://doi.org/10.1038/s41598-018-19166-8
  21. Hoa B.T., Phuc L.H., Hien N.Q. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 1. P. 63. https://doi.org/10.1134/S003602362260160X
  22. Kamanina O.A., Saverina E.A., Rybochkin P.V. et al. // Nanomaterials. 2022. V. 12. № 7. P. 1086. https://doi.org/10.3390/nano12071086
  23. Dolinina E.S., Parfenyuk E.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 401. https://doi.org/10.1134/S0036023622030068
  24. Voronova M.I., Surov O.V., Rubleva N.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 395. https://doi.org/10.1134/S0036023622030159
  25. Ebrahiminezhad A., Najafipour S., Kouhpayeh A. et al. // Colloids Surf., B: Biointerfaces. 2014. V. 118. P. 249. https://doi.org/10.1016/j.colsurfb.2014.03.052
  26. Dubovoy V., Ganti A., Zhang T. et al. // J. Am. Chem. Soc. 2018. V. 140. № 42. P. 13534. https://doi.org/10.1021/jacs.8b04843
  27. Bokov D., Turki Jalil A., Chupradit S. et al. // Adv. Mater. Sci. Eng. 2021. P. 1. https://doi.org/10.1155/2021/5102014
  28. Yamamoto M., Takami T., Matsumura R. et al. // Biocontrol Sci. Jpn. 2016. V. 21. № 4. P. 231. https://doi.org/10.4265/bio.21.231
  29. Frolov N.A., Fedoseeva K.A., Hansford K. et al. // ChemMedChem. 2021. V. 16. № 19. P. 2954. https://doi.org/10.1002/cmdc.202100284
  30. Seferyan M.A., Saverina E.A., Frolov N.A. et al. // ACS Infect. Dis. 2023. V. 9. № 6. P. 1206. https://doi.org/10.1021/acsinfecdis.2c00546
  31. Xu J., Ren D., Chen N. et al. // Colloids Surf., A: Physicochem. 2021. V. 625. P. 126845. https://doi.org/10.1016/j.colsurfa.2021.126845
  32. Esmaeili H., Mousavi S.M., Hashemi S.A. et al. Chapter 7 – Application of biosurfactants in the removal of oil from emulsion. Elsevier, 2021. P. 107. https://doi.org/10.1016/B978-0-12-822696-4.00008-5
  33. Azum N., Alotaibi M.M., Ali M. et al. // J. Mol. Liq. 2023. V. 259. P. 121057. https://doi.org/10.1016/j.molliq.2022.121057

补充文件

附件文件
动作
1. JATS XML
2. Fig.

下载 (44KB)
3. Fig. 1. The scheme of the traditional synthesis of sol-gel matrices with subsequent loading of an antimicrobial drug (a) and synthesis of a drug using an HOUR as a template (b) [20].

下载 (416KB)
4. Fig. 2. Acid hydrolysis in the absence of cells: a – bar-label 50 microns, b– bar-label 5 microns; c, d – acid hydrolysis in the presence of Ogataea polymorpha cells (bar-label 5 microns), d – alkaline hydrolysis in the absence of cells (bar-label 10 microns), e – alkaline hydrolysis in the presence of Cryptococcus curvatus cells (bar label 5 microns).

下载 (697KB)
5. Fig. 3. Structures of the compounds studied in the work. Compounds 1a–1g were first described in [26], compound 2 in [27].

下载 (49KB)
6. Fig. 4. Curves of dependence of MFN on the concentration of a solution of a series of compounds 1 (a), compounds 2 (b).

下载 (144KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».