Zirconosilicate Sorbent Based on Coal Fly Ash Cenospheres for Cesium Immobilization in a Ceramic Form

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hollow aluminosilicate microspheres (cenospheres) of stabilized composition (glass phase – 95.4 wt. %; (SiO2/Al2O3)glass – 3.1) isolated from fly ashes from coal combustion were used to prepare composite sorbents containing a sorption-active component based on zirconosilicates of framework structure. The synthesis products were characterized by XRD, SEM-EDS and low-temperature nitrogen adsorption methods, and their sorption properties towards Cs+ were studied. Zirconosilicate material demonstrates the high distribution coefficient in the process of Cs+ sorption from aqueous solutions (~103–104 ml/g) and stability of sorption capacity as a result of decationation. The possibility of application of SPS-synthesis technology to create high-density mineral-like ceramics for cesium immobilization based on the zirconosilicate sorbent has been investigated. The results of dilatometry, structure and porosity analyses were obtained for ceramics sintered at different temperatures (800–1000°C).

Full Text

Restricted Access

About the authors

T. A. Vereshchagina

Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Email: shichalin_oo@dvfu.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041

E. A. Kutikhina

Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: shichalin_oo@dvfu.ru
Russian Federation, Krasnoyarsk, 660036

O. V. Buyko

Siberian Federal University

Email: shichalin_oo@dvfu.ru
Russian Federation, Krasnoyarsk, 660041

A. A. Belov

Far Eastern Federal University

Email: shichalin_oo@dvfu.ru
Russian Federation, Russky Island, Vladivostok, 690922

O. O. Shichalin

Far Eastern Federal University; Sakhalin State University

Author for correspondence.
Email: shichalin_oo@dvfu.ru
Russian Federation, Russky Island, Vladivostok, 690922; Yuzhno-Sakhalinsk, 693000

A. G. Anshits

Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: shichalin_oo@dvfu.ru
Russian Federation, Krasnoyarsk, 660036

References

  1. Чуканов Н.В., Пеков И.В., Расцветаева Р.К. // Успехи химии. 2004. Т. 73. № 3. С. 227. https://doi.org/10.1070/RC2004v073n03ABEH000825
  2. Chukanov N.V., Pekov I.V. // Rev. Mineral. Geochem. 2005. V. 57. № 1. P. 105. https://doi.org/10.2138/rmg.2005.57.4
  3. Bortun A.I., Bortun L.N., Clearfield A. // Chem. Mater. 1997. V. 9. № 8. P. 1854. https://doi.org/10.1021/cm9701419
  4. Ilyushin G.D., Blatov V.A. // Acta Crystallogr., Sect. B. 2002. V. 58. № 2. P. 198. https://doi.org/10.1107/S0108768101021619
  5. Грищенко Д.Н., Курявый В.Г., Подгорбунский А.Б. и др. // Журн. неорган. химии. 2023. Т. 68. № 1. С. 17. https://doi.org/10.31857/S0044457X22601043
  6. Hou W., Guo X., Shen X. et al. // Nano Energy. 2018. V. 52. P. 279. https://doi.org/10.1016/j.nanoen.2018.07.036
  7. Mauvy F., Siebert E. // J. Eur. Ceram. Soc. 1999. V. 19. № 6–7. P. 917. https://doi.org/10.1016/S0955-2219(98)00344-6
  8. Стенина И.А., Таранченко Е.О., Ильин А.Б. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. С. 1683. https://doi.org/10.31857/S0044457X23601360
  9. Полуэктов П.П., Суханов Л.П., Матюнин Ю.И. // Рос. хим. журн. 2005. Т. 49. № 4. С. 29.
  10. Marocco A., Liguori B., Dell’Agli G. et al. // J. Eur. Ceram. Soc. 2011. V. 31. № 11. P. 1965. https://doi.org/10.1016/j.jeurceramsoc.2011.04.028
  11. Kanda Y. // Constr. Build. Mater. 2022. V. 349. P. 128726. https://doi.org/10.1016/j.conbuildmat.2022.128726
  12. Arun A., Kumar K., Chowdhury A. // J. Eur. Ceram. Soc. 2023. V. 43. № 5. P. 2069. https://doi.org/10.1016/j.jeurceramsoc.2022.12.003
  13. Fernández-González D., Suárez M., Piñuela-Noval J. et al. // Ceram. Int. 2023. V. 49. № 6. P. 9432. https://doi.org/10.1016/j.ceramint.2022.11.108
  14. Panasenko A.E., Shichalin O.O., Yarusova S.B. et al. // Nucl. Eng. Technol. 2022. V. 54. № 9. P. 3250. https://doi.org/10.1016/j.net.2022.04.005
  15. Shichalin O.O., Papynov E.K., Maiorov V.Y. et al. // Radiochemistry. 2019. V. 61. № 2. P. 185. https://doi.org/10.1134/s1066362219020097
  16. Shichalin O.O., Papynov E.K., Nepomnyushchaya V.A. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 6. P. 3004. https://doi.org/10.1016/j.jeurceramsoc.2022.02.007
  17. Längauer D., Čablík V., Hredzák S. et al. // Materials. 2021. V. 14. № 5. P. 1267. https://doi.org/10.3390/ma14051267
  18. Кутихина Т.А., Мазурова Е.В., Буйко О.В. и др. // Физика и химия стекла. 2023. Т. 49. № 2. С. 191.
  19. Vereshchagina T.A., Kutikhina E.A., Buyko O.V. et al. // Chim. Techno Acta. 2022. V. 9. № 4. P. 20229418. https://doi.org/10.15826/chimtech.2022.9.4.18
  20. Anshits N.N., Mikhailova O.A., Anshits A.G. et al. // Fuel. 2010. V. 88. № 9. P. 1849. https://doi.org/10.1016/j.fuel.2010.03.049
  21. Fomenko E.V., Anshits N.N., Solovyov L.A. et al. // Energy Fuels. 2013. V. 27. № 9. P. 5440. https://doi.org/10.1021/ef400754c
  22. Rietveld H.M. // J. Appl. Crystallogr. 1969. V. 2. № 2. P. 65. https://doi.org/10.1107/S0021889869006558
  23. Solovyov L.A. // J. Appl. Crystallogr. 2004. V. 37. № 5. P. 743. https://doi.org/10.1107/S0021889804015638
  24. Greg S.J., Singh K.S.W. Adsorption, surface area, porosity. London: Academic Press, 1982.
  25. ИСО 9277:2010-09 (E). Определение удельной площади поверхности твердых тел по адсорбции газа с применением метода Брунауэра, Эммета и Теллера (BET-метод). M.: Стандартинформ, 2016.
  26. Harkins W.D., Jura G. // J.Am. Chem. Soc. 1944. V. 66. № 8. P. 1366. https://doi.org/10.1021/ja01236a048
  27. Webb P., Orr C. Analytical methods in fine particle technology. Norcross: Micromeritics Instrument Corporation, 1997.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Heteropolyhedral framework structure of the Na4Zr2(SiO4)3 phase of the NASICON family.

Download (265KB)
3. Fig. 2. SEM images of the narrow fraction of cenospheres.

Download (217KB)
4. Fig. 3. SEM images of zeolitisation (a) and zeolitisation-de-alumination (b) products of initial cenospheres; surface areas of modified cenospheres according to EDS data (c, d).

Download (651KB)
5. Fig. 4. SEM images (a, b) and diffractogram (d) of hydrothermal synthesis products in the system ZrOCl2-NaOH-H2O-(H, Na)X; surface area of product pellets according to EDS data (c).

Download (405KB)
6. Fig. 5. Low-temperature nitrogen adsorption-desorption isotherm for the Zr-Si/NASICON sample (a) and pore width distribution calculated from the adsorption branch (b), in dV/dw-lgw coordinates.

Download (137KB)
7. Fig. 6. Cs+ sorption isotherms for synthesis products based on NASICONA phases (dots - experiment, lines - Langmuir model).

Download (97KB)
8. Fig. 7. Samples of zirconosilicate-based ceramic materials obtained by IPS-synthesis at temperatures from 800 to 1000°C.

Download (52KB)
9. Fig. 8. Dilatometric dependences of ceramics obtained at different temperatures by the EIPS method.

Download (330KB)
10. Fig. 9. SEM images of ceramic samples obtained by EIPS at 800°C (a, b), 900°C (c, d) and 1000°C (e, f); distribution maps of Zr, Si and Cs in ceramics obtained at 800°C (g).

Download (757KB)
11. Fig. 10. Diffractograms of ceramics obtained at different temperatures.

Download (137KB)
12. Fig. 11. Low-temperature nitrogen adsorption-desorption isotherms for samples obtained at different sintering temperatures (a) and pore width distribution calculated from the adsorption branch (b), in dV/dw-lgw coordinates.

Download (189KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».