SULFONIUM DERIVATIVES OF closo-DECABORATE ANION WITH CARBONYL GROUPS

Cover Page

Cite item

Full Text

Abstract

The paper presents the synthesis of sulfonium derivatives of the closo-decaborate anion with exo-polyhedral carbonyl groups [B10H9S(CH2C(=O)R)2]- (R = Me, Ph, p-C6H4C1, Nh). The composition and structure are confirmed by elemental analysis, 11B, 1H, and 13C NMR spectroscopy. Crystal packings and intermolecular interactions for the compounds Bu4N[2-BwH9S(CH2COMe)2] and [Ag(FFh3)4][2-B10H9S(CH2COC6H4Cl)2] are studied using X-ray structural analysis and Hirschfeld surface analysis of the anions.

About the authors

A. S Kubasov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: fobosax@mail.ru
Moscow, Russia

A. V Golubev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

O. M Stepanova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

P. Yu Zhizhin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

N. T Kuznetsova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

References

  1. Nakagawa Y., Pooh K., Kobayashi T. et al. // J. Neurooncol. 2003. V. 62. № 1. P. 87. https://doi.org/10.1023/A:1023234902479
  2. Sweet W.H. // J. Neurooncol. 1997. V. 33. № 1. P. 19. https://doi.org/10.1023/A:1005752827194
  3. Hiratsuka J., Kamitani N., Tanaka R. et al. // J. Radiat. Res. 2020. V. 61. № 6. P. 945. https://doi.org/10.1093/jrr/rraa068
  4. Warneke J., Wang X.-B. // J. Phys. Chem. A. 2021. V. 125. № 31. P. 6653. https://doi.org/10.1021/acs.jpca.1c04618
  5. Zelenetskii A.N., Uspenskii S., Zaboronok A. et al. // Polymers (Basel). 2018. V. 10. № 2. P. 181.
  6. Yoneoka S., Park K.C., Nakagawa Y. et al. // Polymers (Basel). 2018. V. 11. № 1. P. 42.
  7. Ruan Z., Liu L., Fu L. et al. // Polym. Chem. 2016. V. 7. № 26. P. 4411.
  8. Sumitani S., Oishi M., Yaguchi T. et al. // Biomaterials. 2012. V. 33. № 13. P. 3568.
  9. Wu G., Barth R.F., Yang W. et al. // Bioconjug. Chem. 2004. V. 15. № 1. P. 185.
  10. Barba-Bon A., Salluce G., Lostale-Seijo I. et al. // Nature. 2022. V. 603. № 7902. P. 637. https://doi.org/10.1038/s41586-022-04413-w
  11. Alberti D., Michelotti A., Lanfranco A. et al. // Sci. Rep. 2020. V. 10. № 1. P. 19274.
  12. Tolpin E.I., Wellum G.R., Berley S.A. // Inorg. Chem. 1978. V. 17. № 10. P. 2867. https://doi.org/10.1021/ic50188a037
  13. Kaszynski P., Ringstrand B. // Angew. Chem. 2015. V. 127. № 22. P. 6676.
  14. Golubev A.V., Baltovskaya D.V., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1.
  15. Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
  16. Gabel D., Moller D., Harfst S. et al. // Inorg. Chem. 1993. V. 32. № 11. P. 2276. https://doi.org/10.1021/ic00063a014
  17. Ikeuchi I., Amano T. // J. Chromatogr. A. 1987. V. 396. P. 273. https://doi.org/10.1016/S0021-9673(01)94064-6
  18. Nagasawa K., Ikenishi Y., Nakagawa Y. // J. Organomet. Chem. 1990. V. 391. № 2. P. 139. https://doi.org/10.1016/0022-328X(90)80168-Y
  19. Kubasov A.S., Matveev E.Y., Turyshev E.S. et al. // Inorg. Chim. Acta. 2018. V. 477. P. 277. https://doi.org/10.1016/j.ica.2018.03.013
  20. Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Inorg. Chem. 2021. V. 60. № 12. P. 8592. https://doi.org/10.1021/acs.inorgchem.1c00516
  21. Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Int. J. Mol. Sci. 2022. V. 23. № 19. P. 12022.
  22. Knapp C. // Compr. Inorg. Chem. II. 2013. P. 651.
  23. Turyshev E.S., Kopytin A.V., Zhizhin K.Y. et al. // Talanta. 2022. V. 241. https://doi.org/10.1016/j.talanta.2022.123239
  24. Turyshev E.S., Kubasov A.S., Golubev A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1841.
  25. Li S., Qiu P., Kang J. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 15. P. 17554.
  26. Pecyna J., Kaszynski P., Ringstrand B. et al. // Inorg. Chem. 2016. V. 55. № 8. P. 4016. https://doi.org/10.1021/acs.inorgchem.6b00319
  27. Zhdanov A.P., Voinova V.V., Klyukin I.N. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 8. P. 563. https://doi.org/10.1134/S1070328419080098
  28. Bruker, SAINT, Bruker AXS Inc.: Madison (WI), USA 2018.
  29. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  30. Sheldrick G.M. // Acta Crystallogr. Sect. C: Struct. Chem. 2015. V. 71. № Md. P. 3. https://doi.org/10.1107/S2053229614024218
  31. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  32. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
  33. Kultyshev R.G., Liu J., Meyers E.A. et al. // Inorg. Chem. 2000. V. 39. № 15. P. 3333. https://doi.org/10.1021/ic000198o
  34. Kultyshev R.G., Liu S., Shore S.G. // Inorg. Chem. 2000. V. 39. № 26. P. 6094. https://doi.org/10.1021/ic0011011
  35. Cotton F.A., Luck R.L. // Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1989. V. 45. № 8. P. 1222.
  36. Bardaji M., Crespo O., Laguna A. et al. // Inorg. Chim. Acta. 2000. V. 304. № 1. P. 7.
  37. Kubasov A.S., Avdeeva V.V. // Inorganics. 2024. V. 12. № 3. P. 79.
  38. Keikha M., Pourayoubi M., Tarahhomi A. et al. // Z. Kristallogr. Mater. 2017. V. 232. № 6. P. 453.
  39. Spackman M.A., Jayatilaka D. // CrystEngComm. 2009. V. 11. № 1. P. 19.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).