Synthesis and investigation of composite sorbents based on mixed K-Co and K-Cu ferrocyanides for cesium extraction from aqueous media
- Authors: Drankov А.N.1, Balybina V.A.1, Zarubobo A.M.2, Milutin V.V.3, Lembikov A.O.1, Pisarev S.M.1, Ponomareva E.A.1, Savelyev N.Y.1, Kokorina N.G.1
-
Affiliations:
- Far Eastern Federal University
- The Joint Institute for Power and Nuclear Research–Sosny of the National Academy of Sciences of Belarus
- Institute of Physical Chemistry and Electrochemistry A.A. Frumkin, Russian Academy of Sciences
- Issue: Vol 70, No 3 (2025)
- Pages: 411-421
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://journal-vniispk.ru/0044-457X/article/view/294854
- DOI: https://doi.org/10.31857/S0044457X25030133
- EDN: https://elibrary.ru/BAQIJX
- ID: 294854
Cite item
Full Text
Abstract
A new method of creating composite sorption materials based on mixed K-Co and K-Cu ferrocyanides using polyethylene is proposed. The uniqueness of this method lies in the hydrophobisation of the material by integrating polyethylene fibres into the ferrocyanide structure. The surface morphology and structure of the obtained sorbents were investigated by scanning electron microscopy, X-ray phase analysis and low-temperature nitrogen adsorption. The peculiarities of extraction of micro- and macro concentrations of Cs+ cations and 137Cs radionuclide from sea water under static conditions were studied. The approximation of experimental sorption data using the Langmuir and Freundlich equations has been carried out, and the values of limiting sorption Gmax and adsorption equilibrium constant Kl have been calculated. It is demonstrated that the sorbents synthesised with the addition of polyethylene have the best sorption characteristics, achieving up to 99% purification of seawater from caesium ions. The average distribution coefficient of caesium in seawater is 3.8×10^4 ml/g at a solid-to-liquid phase ratio of 1000 ml/g, which indicates the prospects of their application for purification of seawater from radiocaesium.
Keywords
Full Text

About the authors
А. N. Drankov
Far Eastern Federal University
Author for correspondence.
Email: artur.drankov@gmail.com
Russian Federation, Vladivostok
V. A. Balybina
Far Eastern Federal University
Email: artur.drankov@gmail.com
Russian Federation, Vladivostok
A. M. Zarubobo
The Joint Institute for Power and Nuclear Research–Sosny of the National Academy of Sciences of Belarus
Email: artur.drankov@gmail.com
Belarus, Minsk
V. V. Milutin
Institute of Physical Chemistry and Electrochemistry A.A. Frumkin, Russian Academy of Sciences
Email: artur.drankov@gmail.com
Russian Federation, Moscow
A. O. Lembikov
Far Eastern Federal University
Email: artur.drankov@gmail.com
Russian Federation, Vladivostok
S. M. Pisarev
Far Eastern Federal University
Email: artur.drankov@gmail.com
Russian Federation, Vladivostok
E. A. Ponomareva
Far Eastern Federal University
Email: artur.drankov@gmail.com
Russian Federation, Vladivostok
N. Y. Savelyev
Far Eastern Federal University
Email: artur.drankov@gmail.com
Russian Federation, Vladivostok
N. G. Kokorina
Far Eastern Federal University
Email: artur.drankov@gmail.com
Russian Federation, Vladivostok
References
- Авраменко В.А., Железнов В.В., Майоров В.Ю. и др. // Современные проблемы науки и образования. 2013. № 5.
- Alshuraiaan B., Pushkin S., Kurilova A. et al. // Energies. 2021. V. 14. № 12. P. 3079. https://doi.org/10.3390/en14123709
- Diaz-Maurin F., Sun H.C., Yu J. et al. // Mater. Res. Soc. 2019. № 4. P. 959. https://doi.org/10.1557/adv.2018.636
- Gupta N.K., Sengupta A., Gupta A. et al. // J. Environ. Chem. Eng. 2018. V. 6. № 2. P. 2159. https://doi.org/10.1016/j.jece.2018.03.021
- Avramenko V.A., Burkov I.S., Zheleznov V.V. et al. // At. Energ. 2002. V. 92. № 6. Р. 488.
- Avramenko V.A., Egorin A.M., Papynov E.K. et al. // Radiochem. 2017. V. 59. № 4. P. 407. https://doi.org/10.1134/S1066362217040142
- Милютин В.В., Гелис В.М., Козлитин Е.А. и др. // Вопросы радиационной безопасности. 2013. № 4. С. 23.
- Тананаев И.Г., Авраменко В.А. // Журн. Белорус. гос. ун-та. Сер. Экология. 2017. № 4. С. 33.
- Tananaev I.V., Seifer G.B., Kharitonov Yu.Ya. et al. // Ferrocyanide Chemistry. M.: Nauka. 1971.
- Sharygin L.M., Borovkova O.L., Kalyagina M.L. et al. // Radiochem. 2013. V. 55. № 1. P. 91. https://doi.org/10.1134/S1066362213010177
- Zemskova L.A., Egorin A.M., Tokar E.A. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1268. https://doi.org/10.1134/S0036023621090175
- Tokar’ E., Zemskova L., Tutov M. et al. // J. Radioanal. Nucl. Chem. 2020. V. 325. P. 567. https://doi.org/10.1007/s10967-020-07248-9
- Remez V.P., Zelenin V.I., Smirnov A.L. et al. // Sorbts. Khromatogr. Prots. 2009. V. 9. P. 739.
- Bezhin N.A., Dovhyi I.I., Milyutin V.V. et al. // J. Radioanal. Nucl. Chem. 2021. V. 327. P. 1095. https://doi.org/10.1007/s10967-020-07588-6
- Han F., Zhang G.H., Gu P.J. et al. // Radioanal. Nucl. Chem. 2013. V. 295. P. 369. https://doi.org/10.1007/s10967-012-1854-3
- Prout W.E., Russell E.R., Groh H.J. et al. // J. Inorg. Nucl. Chem. 1965. V. 27. P. 473. https://doi.org/10.1016/0022- 1902(65)80367 -0
- Vincent C., Hertz A., Vincent T. et al. // Chem. Eng. J. 2014. V. 236. P. 202. https://doi.org/10.1016/j.cej.2013.09.087
- Zheleznov V.V., Vysotskii V.L. // At. Energ. 2002. V. 92. P. 493. https://doi.org/10.1023/A:1020270300242
- Kosyakov V.N., Veleshko A.N., Veleshk I.E. // Radiochem. 2006. V. 48. P. 589. https://doi.org/10.1134/S1066362206060099
- Egorin A., Tokar E., Zemskova L. et al. // Radiochim. Acta. 2016. V. 104. P. 657. https://doi.org/10.1080/01496395.2017.1321669
- Papynov E.K., Dran'kov A.N., Tkachenko I.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 6. P. 820. https://doi.org/10.1134/S0036023620060157
- Balybina V., Dran'kov A., Tananaev I. et al. // Mater. Sci. Forum. 2021. V. 1045. P. 141. https://doi.org/10.4028/www.scientific.net/MSF.1045.141
- Papynov E.K., Mayorov V.Y., Palamarchuk M.S. et al. // J. Sol-Gel Sci. Technol. 2013. V. 68. P. 374. https://doi.org/10.1007/s10971-013-3039-0
- Svetogorov R., Dorovatovskii P., Lazarenko V. // Cryst. Res. Technol. 2020. V. 55. P. 1900184. https://doi.org/10.1002/crat.201900184
- Светогоров Р.Д. Dionis – Diffraction Open Integration Software. Cвидетельство о государственной регистрации программы для ЭВМ № 2018660965.
- Dran'kov A., Shichalin O., Papynov E. et al. // Nucl. Eng. Technol. 2022. V. 54. P. 1991. https://doi.org/10.1016/j.net.2021.12.010
- Momma K., Izumi, F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. http://dx.doi.org/10.1107/S0021889811038970
- Вольхин В.В., Зильберман М.В., Колесова С.А. и др. // Журн. прикл. химии. 1975. Т. 48. С. 54.
- Valsala T.P., Joseph A., Shah J.G. et al. // J. Nucl. Mater. 2009. V. 384. № 2. P. 146.
- Loos-Neskovic C., Ayrault S., Badillo V. et al. // J. Solid State Chem. 2004. V. 177. № 6. P. 1817.
- Giles C.H., MacEwan T.H., Nakhwa S.N. et al. // J. Chem. Soc. 1960. V. 14. P. 3973. http://dx.doi.org/10.1039/jr9600003973
Supplementary files
