Phase equilibria in the Y2O3–SnO2 system

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A series of samples in the Y2O3–SnO2 system with different ratios of yttrium and tin oxides were obtained by solid-phase synthesis. The phase composition of the obtained samples was controlled by X-ray phase analysis. The obtained diffraction patterns were processed and the crystallographic parameters were calculated by full-profile analysis. The conducted study of phase equilibria in the Y2O3–SnO2 system at a temperature of 1400°C made it possible to determine for the first time the homogeneity region of yttrium stannate Y2Sn2O7, which is shifted towards yttrium oxide and is 33.3–36 mol. % Y2O3. The existence of a solid solution based on cubic yttrium oxide, extending to 3 mol. % SnO2, was established. A comparative analysis of the effect of the radius of the substituting tetravalent cation on the width of the homogeneity region of the solid solution based on yttrium oxide was carried out. The absence of solubility of yttrium oxide in tin dioxide was noted.

作者简介

M. Ryumin

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: ryumin@igic.ras.ru
Leninsky pr., 31, Moscow, Russia

G. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: ryumin@igic.ras.ru
Leninsky pr., 31, Moscow, Russia

D. Kondakov

Kurnakov Institute of General and Inorganic Chemistry of RAS

编辑信件的主要联系方式.
Email: ryumin@igic.ras.ru
Leninsky pr., 31, Moscow, Russia

参考

  1. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem., 1983. V. 15. № 2. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
  2. Kennedy B.J., Hunter B.A. Howard Ch.J. // J. Solid State Chem. 1997. V. 130. № 1. P. 58. https://doi.org/10.1006/jssc.1997.7277
  3. Jitta R.R., Gundeboina R., Veldurthi N.K. et al. // J. Chem. Technol. Biotechnol. 2015. V. 90. № 11. P. 1937. https://doi.org/10.1002/jctb.4745
  4. Mallat T., Baiker A. // Chem. Rev. 2004. V.104. № 6. P. 3037. https://doi.org/10.1021/cr0200116
  5. Mims C.A., Jacobson A.J., Hall R.B., Lewandowski J.T. // J. Catal. 1995. V. 153 № 2. P. 197. https://doi.org/10.1006/jcat.1995.1122
  6. Borges F.H., Martins J.C., Caixeta F.J. et. al. // J. Sol-Gel Sci. Technol. 2022. V. 102. P. 249. https://doi.org/10.1007/s10971-021-05673-0
  7. Xu J., Xi R., Xu X. et al. // J. Rare Earths. 2020. Vol. 38. № 8. P. 840–849 https://doi.org/10.1016/j.jre.2020.01.002
  8. Fukina D.G., Belousov A.S., Suleimanov E.V. Pyrochlore Oxides: Structure, Properties, and Potential in Photocatalytic Applications / Switzerland: Springer Cham, 2024. https://doi.org/10.1007/978-3-031-46764-6
  9. Ishida S., Ren F., Takeuchi N. // J. Am. Ceram. Soc. 1993. V. 76. № 10. P. 2644. https://doi.org/10.1111/j.1151-2916.1993.tb03993.x
  10. Lang M., Zhang F., Zhang J. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2010. V. 268. № 19. P. 2951. https://doi.org/10.1016/j.nimb.2010.05.016
  11. Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. № 11. P. 5949. http://dx.doi.org/10.1063/1.1707213
  12. Wang Y., Jing C., Ding Z.-Y. et al. // Crystals. 2023. V.13. № 1. P. 143. https://doi.org/10.3390/cryst13010143
  13. Kar T., Choudhary R.N.P. // Mater. Sci. Eng., B. 2002. V. 90. № 3. P. 224. https://doi.org/10.1016/S0921-5107(01)00745-0
  14. Liu Z.G., Ouyang J.H., Sun K.N. // Fuel Cells. 2011. V. 11. № 2. P. 153. https://doi.org/10.1002/fuce.201000184
  15. Yu T.-H., Tuller H.L. // Solid State Ionics. 1996. V. 86–88 P. 177. https://doi.org/10.1016/0167-2738(96)00118-X
  16. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1462. https://doi.org/10.31857/S0044457X23600974
  17. Heward W.J., Swenson D.J. // J. Mater. Sci. 2007. V. 42. P. 7135. https://doi.org/10.1007/s10853-007-1569-y
  18. Денисова Л.Т., Каргин Ю.Ф., Иртюго Л.А., Денисов В.М. // Неорг. матер. 2015. Т. 51. № 7. С. 714. https://doi.org/10.7868/S0002337X15070040
  19. Асрян Н.А., Кольцова Т.Н., Алиханян А.С., Нипан Г.Д. // Журн. физ. химии. 2003. Т. 77. № 11. С. 1938.
  20. Li X., Cai Y.Q., Cui Q. et al. // Phys. Rev. B. 2016. V. 94. № 21. P. 214429. https://doi.org/10.1103/PhysRevB.94.214429
  21. Комиссарова Л.Н., Шацкий В.М., Пушкина Г.Я. и др. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты / М.: Наука, 1984.
  22. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. № 12. P. 2363. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
  23. Liu C.G., Zhang J., Chen L.J. et al. // Int. J. Mod. Phys. B. 2017.V. 31. № 26. P. 1750184. https://doi.org/10.1142/S0217979217501843
  24. Kong L., Karatchevtseva I., Blackford M.G. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 9. P. 2994. https://doi.org/10.1111/jace.12409
  25. Чернышев В.А. // Физика тв. тела. 2021. Т. 63. № 7. С. 952. https://doi.org/10.21883/FTT.2021.07.51049.027
  26. Sun B.J., Liu Q.L., Liang J.M. et al. // Acta Phys. Sin. 2007. V. 56. № 12. P. 7147. https://doi.org/10.7498/aps.56.7147
  27. Sun B.J., Liu Q.L., Liang J.K. et al. // J. Alloys Compd. 2008. V. 455. P. 265. https://doi.org/10.1016/j.jallcom.2007.01.046
  28. Tammanoon N., Wisitsoraat A., Phokharatkul D. et al. // Sens. Actuators, B. 2018. V. 262. P. 245 https://doi.org/10.1016/j.snb.2018.01.238
  29. Li. Zh., Yang Q., Wu Y. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 16. P. 8659. https://doi.org/10.1016/j.ijhydene.2019.02.050
  30. Hsu Kuo-Chin, Fang Te-Hua, Hsiao Yu-Jen, Chan Ching-An. // Mater. Lett. 2020. V. 261. P. 127144. https://doi.org/10.1016/j.matlet.2019.127144
  31. Gaponov A.V. // Physica B. 2022. V. 639. Art. 414010. https://doi.org/10.1016/j.physb.2022.414010
  32. Parra R., Maniette Y., Varela J.A., Castro M.S. // Mater. Chem. Phys. 2005. V. 94 № 2-3. P. 347. https://doi.org/10.1016/j.matchemphys.2005.05.014
  33. Baur W.H., Khan A.A. // Acta Crystallogr. Sect. B. 1971. V. 27. № 11. P. 2133. https://doi.org/10.1107/S0567740871005466
  34. Shannon R.D. // Acta Crystallogr. Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  35. https://materials.springer.com/isp/phase-diagram/docs/c_0210439
  36. Nayak C., Nigam S., Pandey M. et al. // Chem. Phys. Lett. 2014. V. 597. P. 51. https://doi.org/10.1016/j.cplett.2014.02.028
  37. Baldinozzi G., Berar J.-F., Calvarin G. // Mater. Sci. Forum. 1998. V. 278. P. 680. https://doi.org/10.4028/www.scientific.net/MSF.278-281.680
  38. Pascual C., Duran P. // J. Am. Ceram. Soc. 1983. V. 66. № 1. P. 23. https://doi.org/10.1111/j.1151-2916.1983.tb09961.x
  39. Feighery A.J., Irvine J.T.S., Fagg D.P., Kaiser A. // J. Solid State Chem. 1999. V. 143. № 2. P. 273. https://doi.org/10.1006/jssc.1998.8108

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».