Structure and thermal behavior of novel double cerium(IV) phosphates RbCe2(PO4)3 and Rb2Ce(PO4)2 · xH2O
- Authors: Vasilyeva D.N.1,2, Kozlov D.A.1, Protsenko M.R.1,2, Simonenkо N.P.1, Kozlova T.O.1, Ivanov V.K.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- National Research University “Higher School of Economics”
- Issue: Vol 70, No 7 (2025)
- Pages: 849-857
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journal-vniispk.ru/0044-457X/article/view/306849
- DOI: https://doi.org/10.31857/S0044457X25070012
- EDN: https://elibrary.ru/jnxahp
- ID: 306849
Cite item
Abstract
New double cerium(IV)-rubidium phosphates, RbCe2(PO4)3 and Rb2Ce(PO4)2 · хH2O, have been obtained under hydrothermal conditions. Using the crystallographic parameters of isostructural compounds, the unit cell parameters of RbCe2(PO4)3 and Rb2Ce(PO4)2 · хH2O were calculated from X-ray powder diffraction data. The following values were obtained: for RbCe2(PO4)3, a = 17.494(1) A, b = 6.7759(5) A, c = 7.9831(5) A, β = 102.875(4)°, V = 922.51(10), A3, Z = 4 (space group C2/c); for Rb2Ce(PO4)2 · хH2O, a = b = 6.8663(1) A, c = 17.6562(5) A, V = 832.42(3) A3, Z = 4 (space group I41/amd). Thermal behavior analysis of the synthesized compounds was performed, including phase composition determination of the thermolysis products. The results demonstrate that the initial structures exhibit relative thermal stability, with decomposition onset temperatures of approximately 500°C. At higher temperatures, progressive thermolysis leads to the formation of CePO4 alongside RbPO3 or Rb4P2O7, depending on conditions.
Keywords
About the authors
D. N. Vasilyeva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University “Higher School of Economics”
Email: taisiya@igic.ras.ru
Moscow, 119991 Russia; Moscow, 101000 Russia
D. A. Kozlov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: taisiya@igic.ras.ru
Moscow, 119991 Russia
M. R. Protsenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University “Higher School of Economics”
Email: taisiya@igic.ras.ru
Moscow, 119991 Russia; Moscow, 101000 Russia
N. P. Simonenkо
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: taisiya@igic.ras.ru
Moscow, 119991 Russia
T. O. Kozlova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: taisiya@igic.ras.ru
Moscow, 119991 Russia
V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: taisiya@igic.ras.ru
Moscow, 119991 Russia
References
- Locock A.J. / Crystal Chemistry of Actinide Phosphates and Arsenates, Struct. Chem. Inorg. Actin. Compd. Amsterdam: Elsevier, 2007. Р. 217. https://doi.org/10.1016/B978-044452111-8/50007-7
- Achary S.N., Bevara S., Tyagi A.K. // Coord. Chem. Rev. 2017. V. 340. P. 266. https://doi.org/10.1016/j.ccr.2017.03.006
- Orlova A.I. // Radiochemistry. 2002. V. 44. № 5. P. 423. https://doi.org/10.1023/A:1021192605465
- Orlova A.I., Volgutov V.Y., Castro G.R. et al. // Inorg. Chem. 2009. V. 48. № 19. P. 9046. https://doi.org/10.1021/ic9013812
- Pet’kov V.I. // Russ. Chem. Rev. 2012. V. 81. № 7. P. 606. https://doi.org/10.1070/rc2012v081n07abeh004243
- Brandel V., Dacheux N. // J. Solid State Chem. 2004. V. 177. № 12. P. 4755. https://doi.org/10.1016/j.jssc.2004.08.008
- Yu N., Klepov V.V., Schlenz H. et al. // Cryst. Growth Des. 2017. V. 17. № 3. P. 1339. https://doi.org/10.1021/acs.cgd.6b01741
- Wang J., Raistrick I.D., Huggins R.A. // J. Electrochem. Soc. 1989. V. 136. № 9. P. 2529. https://doi.org/10.1149/1.2097457
- Lin X., Feng A., Zhang Z. et al. // J. Rare Earths. 2014. V. 32. № 10. P. 946. https://doi.org/10.1016/S1002-0721(14)60167-8
- Varma M., Poswal H.K., Velaga S. et al. // J. Solid State Chem. 2019. V. 276. P. 251. https://doi.org/10.1016/j.jssc.2019.05.005
- Allulli S., Tomassini N., Massucci M.A. // J. Chem. Soc., Dalton Trans. 1976. № 18. P. 1816. https://doi.org/10.1039/DT9760001816
- Dyer A., Leigh D., Ocon F.T. // J. Inorg. Nucl. Chem. 1971. V. 33. № 9. P. 3141. https://doi.org/10.1016/0022-1902(71)80080-5
- Dörffel M., Liebertz J. // Z. Kristallogr. — Cryst. Mater. 1990. V. 193. № 1–4. P. 155. https://doi.org/10.1524/zkri.1990.193.14.155
- Marsac R., Réal F., Banik N.L. et al. // Dalton Trans. 2017. V. 46. № 39. P. 13553. https://doi.org/10.1039/c7dt02251d
- Clearfield A. // Chem. Rev. 1988. V. 88. № 1. P. 125. https://doi.org/10.1021/cr00083a007
- Johansson B., Luo W., Li S. et al. // Sci. Rep. 2014. V. 4. № 1. P. 6398. https://doi.org/10.1038/srep06398
- Ogorodnyk I.V., Zatovsky I.V., Baumer V.N. et al. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2006. V. 62. № 12. P. 100. https://doi.org/10.1107/S0108270106044519
- Kozlova T.O., Baranchikov A.E., Ivanov V.K. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1761. https://doi.org/10.1134/S003602362112010X
- Bevara S., Achary S.N., Patwe S.J. et al. // Dalton Trans. 2016. V. 45. № 3. P. 980. https://doi.org/10.1039/c5dt03288a
- Bevara S., Rajeswari B., Patwe S.J. et al. // J. Alloys Compd. 2019. V. 783. P. 310. https://doi.org/10.1016/j.jallcom.2018.12.315
- Kozlova T.O., Vasilyeva D.N., Kozlov D.A. et al. // Nanosyst. Physics, Chem. Math. 2023. V. 14. № 1. P. 112. https://doi.org/10.17586/2220-8054-2023-14-1-112-119
- Matković B., Prodić B., Sljukić M. et al. // Croat. Chem. Acta. 1968. V. 40. P. 147. https://hrcak.srce.hr/208043
- Lai Y., Chang Y., Wong T. et al. // Inorg. Chem. 2013. V. 52. № 23. P. 13639. https://doi.org/10.1021/ic402208s
- Baranchikov A.E., Kozlova T.O., Istomin S.Y. et al. // Chemistry Select. 2024. V. 9. № 17. https://doi.org/10.1002/slct.202401010
- Ramos-Garcés M.V., González-Villegas J., López-Cubero A. et al. // Acc. Mater. Res. 2021. V. 2. № 9. P. 793. https://doi.org/10.1021/accountsmr.1c00102
- Chiang S.-J., Kaduk J.A., Shaw L.L. // Mater. Chem. Phys. 2024. V. 312. P. 128656. https://doi.org/10.1016/j.matchemphys.2023.128656
- Bregiroux D., Popa K., Wallez G. // J. Solid State Chem. 2015. V. 230. P. 26. https://doi.org/10.1016/j.jssc.2015.06.010
- Neumeier S., Arinicheva Y., Ji Y. et al. // Radiochim. Acta. 2017. V. 105. № 11. P. 961. https://doi.org/10.1515/ract-2017-2819
- Krishnan K., Sali S.K., Singh Mudher K.D. // J. Alloys Compd. 2006. V. 414. № 1–2. P. 310. https://doi.org/10.1016/j.jallcom.2005.07.043
- Kozlova T.O., Popov A.L., Kolesnik I.V. et al. // J. Mater. Chem. B. 2022. V. 10. № 11. P. 1775. https://doi.org/10.1039/d1tb02604f
- Tronev I.V., Sheichenko E.D., Razvorotneva L.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 3. P. 263. https://doi.org/10.1134/S0036023622602744
- Salvado M.A., Pertierra P., Trobajo C. et al. // J. Am. Chem. Soc. 2007. V. 129. № 36. P. 10970. https://doi.org/10.1021/ja0710297
- Kolesnik I.V., Shcherbakov A.B., Kozlova T.O. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 960. https://doi.org/10.1134/S0036023620070128
- Lutterotti L. // Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. with Mater. Atoms. 2010. V. 268. № 3–4. P. 334. https://doi.org/10.1016/j.nimb.2009.09.053
- Ni Y., Hughes J.M. // Am. Mineral. 1995. V. 80. P. 21. https://doi.org/10.2138/am-1995-1-203
- Shekunova T.O., Istomin S.Y., Mironov A.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 27. P. 3242. https://doi.org/10.1002/ejic.201801182
- Shannon R.D., Prewitt C.T. // Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 1969. V. 25. № 5. P. 925. https://doi.org/10.1107/s0567740869003220
- Sidey V. // Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater. 2016. V. 72. № 4. P. 626. https://doi.org/10.1107/S2052520616008064
- Usman M., Morrison G., Klepov V.V. et al. // J. Solid State Chem. 2019. V. 270. P. 19. https://doi.org/10.1016/j.jssc.2018.10.033
- Patkare G., Shafeeq M., Sengupta A. et al. // Eur. J. Inorg. Chem. 2023. V. 26. № 17. https://doi.org/10.1002/ejic.202300140
- Keester K.L., Jacobs J.T. // Ferroelectrics. 1974. V. 8. № 1. P. 657. https://doi.org/10.1080/00150197408234184
- Bevara S., Mishra K.K., Patwe S.J. et al. // Inorg. Chem. 2017. V. 56. № 6. P. 3335. https://doi.org/10.1021/acs.inorgchem.6b02870
- Wang Y., Zhang X., Li L. et al. // Inorg. Chem. 2024. V. 63. № 38. P. 17340. https://doi.org/10.1021/acs.inorgchem.4c02468
- Kozlova T.O., Baranchikov A.E., Birichevskaya K.V.Y., et al. // // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1624. https://doi.org/10.1134/S0036023621110139
- Kozlova T.O., Mironov A.V., Istomin S.Y. et al. // Chem. — A Eur. J. 2020. V. 26. № 53. P. 12188. https://doi.org/10.1002/chem.202002527
- Nabhan E., Abd-Allah W.M., Ezz-El-Din F.M. // Results Phys. 2017. V. 7. P. 119. https://doi.org/10.1016/j.rinp.2016.12.001
- Ghoneim N.A., Abdelghany A.M., Abo-Naf S.M. et al. // J. Mol. Struct. 2013. V. 1035. P. 209. https://doi.org/10.1016/j.molstruc.2012.11.034
- Santagneli S.H., de Araujo C.C., Strojek W. et al. // J. Phys. Chem. B. 2007. V. 111. № 34. P. 10109. https://doi.org/10.1021/jp072883n
- Hadrich A., Lautie A., Mhiri T. et al. // Vib. Spectrosc. 2001. V. 26. P. 51. https://doi.org/10.1016/S0924-2031(01)00100-X
- Cruickshank D.W.J. // Acta Crystallogr. 1964. V. 17. № 6. P. 681. https://doi.org/10.1107/S0365110X64001694
Supplementary files
