Electrochromic properties of β-V2O5 film and its preparation using vanadyl alkoxoacetylacetonate
- Authors: Gorobtsov P.Y.1, Simonenko N.P.1, Simonenko T.L.1, Simonenko E.P.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 70, No 7 (2025)
- Pages: 969-978
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://journal-vniispk.ru/0044-457X/article/view/306853
- DOI: https://doi.org/10.31857/S0044457X25070131
- EDN: https://elibrary.ru/joqevq
- ID: 306853
Cite item
Abstract
Using alkoxoacetylacetonate vanadyl, a vanadium pentaoxide film crystallized as a tetragonal β-V2O5 modification was obtained by dip coating technique. The material is significantly textured along the axis (200) and is formed of one-dimensional structures with an aspect ratio of no less than 10, some of which are consolidated into agglomerates within which the particles are touching with long faces. According to the results of Raman spectroscopy and the value of electron work function for the film surface (4.63 eV), measured by KPFM, the oxide contains a noticeable amount of V4+. The obtained material, from the electrochromic properties point of view, is anodic, changing color during reduction to pale blue, and during oxidation — to less transparent yellow-orange. The optical contrast reaches 27% in the blue part of the visible spectrum. The results of the study allow us to conclude that β-V2O5-based materials obtained using alkoxoacetylacetonate vanadyl are promising for use as a component of electrochromic devices.
About the authors
P. Y. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Moscow, 119991 Russia
N. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Moscow, 119991 Russia
T. L. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Moscow, 119991 Russia
E. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: phigoros@gmail.com
Moscow, 119991 Russia
References
- Devthade V., Lee S. // J. Appl. Phys. 2020. V. 128. № 23. P. 231101. https://doi.org/10.1063/5.0027690
- Yao J., Li Y., Massé R.C. et al. // Energy Storage Mater. 2018. V. 11. P. 205. https://doi.org/10.1016/j.ensm.2017.10.014
- Yue Y., Liang H. // Adv. Energy. Mater. 2017. V. 7. № 17. P. 1. https://doi.org/10.1002/aenm.201602545
- Enjalbert R., Galy J. // Acta Crystallog. 1986. V. 42. № 11. P. 1467. https://doi.org/10.1524/zkri.1971.133.133.75
- Kumar M., Kim Y., Lee H.H. // Cur. Appl.Phys. 2021. V. 30. P. 85. https://doi.org/10.1016/j.cap.2021.09.011
- Wu C., Xie Y. // Energy Environ. Sci. 2010. V. 3. № 9. P. 1191. https://doi.org/10.1039/c0ee00026d
- Liu M., Su B., Tang Y. et al. // Adv. Energy. Mater. 2017. V. 7. № 23. https://doi.org/10.1002/aenm.201700885
- Wachs I.E. // Dalton Transactions. 2013. V. 42. № 33. P. 11762. https://doi.org/10.1039/c3dt50692d
- Hu P., Hu P., Vu T.D. et al. // Chem. Rev. 2023. V. 123. № 8. P. 4353. https://doi.org/10.1021/acs.chemrev.2c00546
- Tan H.T., Rui X., Sun W. et al. // Nanoscale. 2015. V. 7. № 35. P. 14595. https://doi.org/10.1039/c5nr04126k
- Zhang N., Dong Y., Jia M. et al. // ACS Energy Lett. 2018. V. 3. № 6. P. 1366. https://doi.org/10.1021/acsenergylett.8b00565
- Mattelaer F., Geryl K., Rampelberg G. et al. // RSC Adv. 2016. V. 6. № 115. P. 114658. https://doi.org/10.1039/C6RA25742A
- Liu F., Chen Z., Fang G. et al. // Nanomicro. Lett. 2019. V. 11. № 1. P. 1. https://doi.org/10.1007/s40820-019-0256-2
- Wang Y., Lubbers T., Xia R. et al. // J. Electrochem. Soc. 2021. V. 168. № 2. P. 020507. https://doi.org/10.1149/1945-7111/abdef2
- Khan Z., Singh P., Ansari S.A. et al. // Small. 2021. V. 17. № 4. P. 1. https://doi.org/10.1002/smll.202006651
- Majumdar D., Mandal M., Bhattacharya S.K. // Chem. Electro. Chem. 2019. V. 6. № 6. P. 1623. https://doi.org/10.1002/celc.201801761
- Foo C.Y., Sumboja A., Tan D.J.H. et al. // Adv. Energy. Mater. 2014. V. 4. № 12. P. 1. https://doi.org/10.1002/aenm.201400236
- Narayanan R. // J. Solid State Chem. 2017. V. 253. № May. P. 103. https://doi.org/10.1016/j.jssc.2017.05.035
- Granqvist C.G. // Thin Solid Films. 2014. V. 564. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
- Mortimer R.J. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
- Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
- Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
- Granqvist C.G., Arvizu M.A., Qu H.Y. et al. // Surf. Coat. Technol. 2019. V. 357. P. 619. https://doi.org/10.1016/j.surfcoat.2018.10.048
- Granqvist C.G., Arvizu M.A., Bayrak Pehlivan et al. // Electrochim. Acta. 2018. V. 259. P. 1170. https://doi.org/10.1016/j.electacta.2017.11.169
- Vernardou D. // Coatings. 2017. V. 7. № 2. P. 1. https://doi.org/10.3390/coatings7020024
- Iida Y., Kaneko Y., Kanno Y. // J. Mater. Process. Technol. 2008. V. 197. № 1–3. P. 261. https://doi.org/10.1016/j.jmatprotec.2007.06.032
- Tong Z., Hao J., Zhang K. et al. // J. Mater. Chem. C Mater. 2014. V. 2. № 18. P. 3651. https://doi.org/10.1039/c3tc32417f
- Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C Mater. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
- Gorobtsov P.Y., Simonenko N.P., Simonenko T.L. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1580. https://doi.org/10.1134/S0036023624602277
- Горобцов Ф.Ю., Симоненко Н.П., Мокрушин А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 624. https://doi.org/10.31857/S0044457X24040177
- Jin A., Chen W., Zhu Q. et al. // Electrochim. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
- Jeyalakshmi K., Vijayakumar S., Nagamuthu S. et al. // Mater. Res. Bull. 2013. V. 48. № 2. P. 760. https://doi.org/10.1016/j.materresbull.2012.11.054
- Asadov A., Mukhtar S., Gao W. // J. Vac. Sci. Tech. B. 2015. V. 33. № 4. https://doi.org/10.1116/1.4922628
- Khlayboonme S.T., Thedsakhulwong A. // Mater. Res. Express. 2022. V. 9. № 7. https://doi.org/10.1088/2053-1591/ac827a
- Khlayboonme S.T. // Results. Phys. 2022. V. 42. P. 106000. https://doi.org/10.1016/j.rinp.2022.106000
- Filonenko V.P., Sundberg M., Werner P.E. et al. // Acta Crystallogr. B. 2004. V. 60. № 4. P. 375. https://doi.org/10.1107/S0108768104012881
- Talledo A., Valdivia H., Benndorf C. // J. Vac. Sci. Tech. 2003. V. 21. № 4. P. 1494. https://doi.org/10.1116/1.1586282
- Zou C., Fan L., Chen R. et al. // Cryst. Eng. Comm. 2012. V. 14. № 2. P. 626. https://doi.org/10.1039/c1ce06170d
- Shvets P., Dikaya O., Maksimova K. et al. // J. Raman Spectr. 2019. V. 50. № 8. P. 1226. https://doi.org/10.1002/jrs.5616
- Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
- Clauws P., Broeckx J., Vennik J. // Physica Status Solidi (B). 1985. V. 131. № 2. P. 459. https://doi.org/10.1002/pssb.2221310207
- Abello L., Husson E., Repelin Y. et al. // Spectrochim. Acta A. 1983. V. 39. P. 641.
- Zhou B., He D. // J. Raman Spectr. 2008. V. 39. № 10. P. 1475. https://doi.org/10.1002/jrs.2025
- Baddour-Hadjean R., Marzouk A., Pereira-Ramos J.P. // J. Raman Spectr. 2012. V. 43. № 1. P. 153. https://doi.org/10.1002/jrs.2984
- Schilbe P. // Physica B. 2002. V. 316–317. P. 600.
- Ji Y., Zhang Y., Gao M. et al. // Sci. Rep. 2014. V. 4. https://doi.org/10.1038/srep04854
- Meyer J., Zilberberg K., Riedl T. et al. // J. Appl. Phys. 2011. V. 110. № 3. https://doi.org/10.1063/1.3611392
- Zhang H., Wang S., Sun X. et al. // J. Mater. Chem. C. Mater. 2017. V. 5. № 4. P. 817. https://doi.org/10.1039/c6tc04050k
- Choi S.G., Seok H.J., Rhee S. et al. // J. Alloys. Compd. 2021. V. 878. https://doi.org/10.1016/j.jallcom.2021.160303
- Peng H., Sun W., Li Y. et al. // Nano. Res. 2016. V. 9. № 10. P. 2960. https://doi.org/10.1007/s12274-016-1181-z
- Gorobtsov P.Yu., Mokrushin A.S., Simonenko T.L. et al. // Materials. 2022. V. 15. № 21. P. 7837. https://doi.org/10.3390/ma15217837
- Cholant C.M., Westphal T.M., Balboni R.D.C. et al. // J. Sol. State Electrochem. 2017. V. 21. № 5. P. 1509. https://doi.org/10.1007/s10008-016-3491-1
- Patil C.E., Tarwal N.L., Jadhav P.R. et al. // Cur. Appl. Physics. 2014. V. 14. № 3. P. 389. https://doi.org/10.1016/j.cap.2013.12.014
- Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2019. V. 321. P. 134743. https://doi.org/10.1016/j.electacta.2019.134743
- Panagopoulou M., Vernardou D., Koudoumas E. et al. // J. Phys. Chem. 2017. V. 121. № 1. P. 70. https://doi.org/10.1021/acs.jpcc.6b09018
- Jin A., Chen W., Zhu Q. et al. // Thin Solid Films. 2009. V. 517. № 6. P. 2023. https://doi.org/10.1016/j.tsf.2008.10.001
- Mjejri I., Gaudon M., Rougier A. // Solar Energy Materials and Solar Cells. 2019. V. 198. № December 2018. P. 19. https://doi.org/10.1016/j.solmat.2019.04.010
- Sajitha S., Aparna U., Deb B. // Adv. Mater. Interfaces. 2019. V. 6. № 21. P. 1. https://doi.org/10.1002/admi.201901038
- Surca A.K., Dražić G., Mihelčič M. // Solar Energy Materials and Solar Cells. 2019. V. 196. P. 185. https://doi.org/10.1016/j.solmat.2019.03.017
Supplementary files
